Chapter 9:

Maxwell's Equations:

Differential Form	Integral Form	Remarks
$\overline{\nabla \cdot \mathbf{D}} = \rho_{v}$	$\oint_{\mathbf{S}} \mathbf{D} \cdot d\mathbf{S} = \int_{\mathbf{w}} \rho_{\mathbf{v}} d\mathbf{v}$	Gauss's law
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	Nonexistence of isolated magnetic charge*
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d\mathbf{S}$	Faraday's law
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{I} \mathbf{H} \cdot d\mathbf{l} = \int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$	Ampère's circuit law

Time-Harmonic Maxwell's Equations: (assuming time factor $e^{j\omega t}$)

Point Form	Integral Form
$\nabla \cdot \mathbf{D}_s = \rho_{vs}$	$\oint \mathbf{D}_s \cdot d\mathbf{S} = \int \rho_{vs} dv$
$\nabla \cdot \mathbf{B}_s = 0$	$\oint \mathbf{B}_s \cdot d\mathbf{S} = 0$
$\nabla \times \mathbf{E}_{s} = -j\omega \mathbf{B}_{s}$	$\oint \mathbf{E}_s \cdot d\mathbf{l} = -j\omega \int \mathbf{B}_s \cdot d\mathbf{S}$
$\nabla \times \mathbf{H}_{s} = \mathbf{J}_{s} + j\omega \mathbf{D}_{s}$	$\oint \mathbf{H}_{s} \cdot d\mathbf{l} = \int \left(\mathbf{J}_{s} + j\omega \mathbf{D}_{s} \right) \cdot d\mathbf{S}$

Faraday's law:	$V_{\rm emf} = -\frac{d\lambda}{dt} = -N\frac{d\Psi}{dt}$				
Transformer emf:	$V_{\rm emf} = \oint_L \mathbf{E} \cdot d\mathbf{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$				
	ſ		Stokes's theorem gives:		
Motional emf:	$V_{\text{emf}} = \oint_{L} \mathbf{E}_{m} \cdot d\mathbf{l} = \oint_{L} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l} \qquad \nabla \times \mathbf{E}_{m} = \nabla \times (\mathbf{u} \times \mathbf{B})$				
Moving loop in time-varying field:	$V_{\text{emf}} = \oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} + \oint_{L} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}$				
	∂ D Disp	lacement current:			
Displacement current density:	$\mathbf{J}_d = \frac{1}{dt}$	$I_d = \int_S \mathbf{J}_d \cdot d\mathbf{S} = \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$			
Lorentz force equation:	$\mathbf{F} = Q(\mathbf{E} + \mathbf{u})$	\times B)			

Magnetic Vector Potential (A):	$\mathbf{A} = \int_{v} \frac{\mu \mathbf{J} dv}{4\pi R}$	$\mathbf{B} = \mathbf{C}$ $\mathbf{E} = -\mathbf{C}$	$ \nabla \times \mathbf{A} \\ \nabla V - \frac{\partial \mathbf{A}}{\partial t} $	Lorenz condition for potentials: $\nabla \cdot \mathbf{A} = -\mu \varepsilon \frac{\partial V}{\partial t}$
Wave $\nabla^2 V - \mu \varepsilon \frac{\partial^2 V}{\partial t^2} = -$		$=-\frac{\rho_v}{\varepsilon}$	$ abla^2 \mathbf{A} - \mu \varepsilon \frac{\partial^2 \mathbf{A}}{\partial t^2} =$	$= -\mu J$
(V ² : vector Laplacian)	$\nabla^2 \mathbf{E} = \mu \sigma \frac{\partial \mathbf{E}}{\partial t} + \mu$	$\epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$	$\nabla^2 \mathbf{E}_{\mathbf{s}} - \gamma^2 \mathbf{E}_{\mathbf{s}} =$ (also valid for $\mathbf{H}_{\mathbf{s}}$)	$0 \gamma = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)}$

Chapter 10:

Type of medium	σ	ε	μ	Condition
Lossy dielectric:	≠ 0	ErE0	μ _r μ₀	N/A
Lossless dielectric:	$\simeq 0$	ε _r ε ₀	$\mu_r \mu_0$	σ << ωε
Good dielectric:				tan θ << 1 (< 0.2)
Good conductor:	$\simeq \infty$	ε0	μrμo	tan θ >> 1
Free space:	= 0	ε ₀	μ_0	N/A

	Lossy Medium Exact	Lossless Medium	Free Space	Conductor
lpha = Np/m (or m ⁻¹) attenuation constant	$\omega \left[\frac{\mu \varepsilon}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 - 1} \right] \right]^{1/2}$	0	0	$\sqrt{\pi f\mu\sigma}$
eta = rad/m phase constant	$\omega \left[\frac{\mu \varepsilon}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 + 1} \right] \right]^{1/2}$	$\omega\sqrt{\muarepsilon}$	$\omega \sqrt{\mu_o \varepsilon_o}$ $\frac{1}{\sqrt{\mu_o \varepsilon_o}} = c = 3 \times 10^8$	$\sqrt{\pi f\mu\sigma}$
$\eta = \ _{\Omega}$	$\sqrt{\frac{j\omega\mu}{\sigma+j\omega\varepsilon}} = \frac{j\omega\mu}{\gamma} = \sqrt{\frac{\mu}{\varepsilon_c}}$	$\sqrt{rac{\mu}{arepsilon}}$	$\sqrt{rac{\mu_o}{m{arepsilon}_o}} \stackrel{=}{=} 120 \pi$	$(1+j)\frac{\alpha}{\sigma}$
$\nu = \frac{\omega}{\beta},$ m/s	$\begin{array}{l} \lambda = \frac{2\pi}{\beta} \\ \mathbf{m} \end{array}$			

AC Resistance due to skin effect:	$R_{\rm ac} = \frac{\ell}{\sigma \delta w} =$	$\frac{R_s\ell}{w}$	R _s	$=\frac{1}{\sigma\delta}=$	$=\sqrt{\frac{\pi f\mu}{\sigma}}$	I: length of conductor w: width R _s : resistance of conductor with unit length and width
Loss tangent	$\tan\theta = \frac{\sigma}{\omega\varepsilon}$	θ	= 2	$2 heta_\eta$	θ _η : angle o θ: loss ang	f intrinsic impedance le, δ in Prof. Nihad's notes
and angle:		ta	ın Ə	$=\frac{\varepsilon''}{\varepsilon'}$		
Skin depth : (δ _c in Prof. Nihad's notes)	Conductors: $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$		Exact: δ	$=\frac{1}{\alpha}$	δ (in mete travels in amplitude	ers) is the distance a wave a medium whereby its e decreases by e ⁻¹
Direction of propagation of TEM:	$\mathbf{a}_E \times \mathbf{a}_H =$	\mathbf{a}_k	а _Е : а _Н : а _к :	vector cor vector cor di <u>rection</u> d	mponents of mponents of mponents of wave pro	f E (electric field intensity) f H (magnetic field intensity) pagation
Complex permittivity:	$\varepsilon_c = \varepsilon' - j\varepsilon''$	ε' = ε = ε''/ ε' =	= ε _r ε ₀ = loss t	$\epsilon'' = \sigma/\omega$	$\varepsilon_c = \varepsilon \Big[$	$1 - j \frac{\sigma}{\omega \varepsilon} \bigg] = \varepsilon [1 - j \tan \theta]$

Propagation Constant:	$\gamma = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)}$	$\overline{\sigma + j\omega\varepsilon} \qquad \gamma = \alpha + j\beta$		$\gamma = j\omega\sqrt{\mu\varepsilon_c}$
	$\beta^2 - \alpha^2 = 2\alpha\beta =$	$\frac{\pi}{2} = \theta_{\eta} + \theta_{\gamma}$		
	$\eta\gamma = j\omega\mu$	$\tan \theta_{\gamma} = \frac{\beta}{\alpha}$		$0 \le \theta_{\eta} \le \frac{\pi}{4}$ $\frac{\pi}{4} \le \theta_{\gamma} \le \frac{\pi}{2}$
Good dielectric: (low-loss)	$\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	$\beta =$	$\omega\sqrt{\mu\varepsilon}$	$\eta = \sqrt{rac{\mu}{arepsilon}}$
Field intensity:	$H = \frac{1}{\eta} (a_k \times E)$)	E =	$-\eta(\boldsymbol{a}_k \times \boldsymbol{H})$
Intrinsic impedance:	$\tan \theta_{\eta} = \frac{\alpha}{\beta}$			

Poynting's Vector:	$\mathcal{P} = \mathbf{E} \times \mathbf{H}$				
Time Average	Integral form: $1 \int_{-1}^{T}$	Wave traveling E^2	; in +z:	Phasor form:	
Vector:	$\mathcal{P}_{\text{ave}}(z) = \frac{1}{T} \int_0^{z} \mathcal{P}(z, t)$) $dt \mathscr{P}_{ave}(z) = \frac{\mathcal{L}_0}{2 \eta }$	$e^{-2\alpha z}\cos\theta_{\eta}\mathbf{a}_{z}$	$\mathcal{P}_{\text{ave}}(z) = \frac{1}{2} \operatorname{Re}(\mathbf{E}_s \times \mathbf{H}_s^*)$	
Total Time Average Power:	$P_{\rm ave} = \int_{S} \mathcal{P}_{\rm ave} \cdot d\mathbf{S}$ crossing a surface S				
Reflection Coefficient:	$\Gamma = rac{E_{ro}}{E_{io}} = rac{\eta_2 - \eta_1}{\eta_2 + \eta_1} ~~$ r	$-1 \leq \Gamma \leq +1$ real or complex	E _{ro} : Magnitude of reflected E E _{i0} : Magnitude of incident E		
	$ \Gamma ^{2} = \frac{P_{\text{reflected}}}{P_{\text{incident}}} \qquad \qquad$				
Transmission Coefficient:	$ au = rac{E_{to}}{E_{io}} = rac{2\eta_2}{\eta_2 + \eta_1}$ r	$ au = 1 + \Gamma$ real or complex	E _{t0} : Magnitude	e of Transmitted E	
Standing Wave Ratio (SWR):	$\frac{ \mathbf{E}_1 _{\max}}{ \mathbf{E}_1 _{\min}} = \frac{ \mathbf{H}_1 _{\max}}{ \mathbf{H}_1 _{\min}} = -$	$\frac{1 + \Gamma }{1 - \Gamma }$			

Wave traveling from medium	$\Gamma = \frac{E_{r0}}{\Gamma} = \frac{Z - \eta_1}{Z + \tau}$	$Z = \eta_2$	$Z = \eta_2 \cdot \frac{\eta_3 \cdot \cos(\beta_2 \cdot d) + j \cdot \eta_2 \cdot \sin(\beta_2 \cdot d)}{\eta_2 \cdot \cos(\beta_2 \cdot d) + j \cdot \eta_3 \cdot \sin(\beta_2 \cdot d)}$				
(medium 2: coating)	E_{i0} $Z + \eta_1$	$Z = \eta_2$	$\cdot \frac{\eta_3 + j \cdot \eta_2 \cdot \tan(\beta_2 \cdot d)}{\eta_2 + j \cdot \eta_3 \cdot \tan(\beta_2 \cdot d)}$	Z:Input Impedance d: thickness of coating (distance from interface 1- 2 to interface 2-3)			
	$\Gamma = 0 \to \mathbf{Z} = \eta_1$ $\mathbf{j} \cdot \tan(\beta_2 \cdot d) = \frac{\eta_1 \eta_2 - \eta_3 \eta_2}{\eta_2^2 - \eta_1 \eta_3}$		Half-wave section: (n: int	eger)			
Zero			$\eta_1 = \eta_3 \& d = n \frac{\lambda_2}{2}$				
reflection			Quarter-wave transformer: (n: integer)				
			$d = (2n+1)\frac{\lambda_2}{4} \qquad 8$	$\eta_2 = \sqrt{\eta_1 \eta_3}$			
Index of			if $n_1 > n_2$:	SWR = $\frac{n_1}{n_2}$			
Refraction: (µ _r =1)	$n = \sqrt{\varepsilon_r}$		if $n_1 < n_2$: 5	SWR = $\frac{n_2}{n_1}$			

General form	form $E(x, y, z) = (a_x E_{0x} + a_y E_{0y} + a_z E_{0z})e^{-j(k_x x + k_y y + k_z z)}$					
Waves:	$E(x, y, z) = E_0 e^{-j \cdot k \cdot a_k \cdot R}$	I	$ E_0 = \sqrt{ E_0 }$	$\int E_{0x}^{2} + E_{0y}^{2} + E_{0z}^{2}$		
Propagation Vector: (Wave Number Vector)	$\mathbf{k} = k_x \mathbf{a}_x + k_y \mathbf{a}_y + k_z \mathbf{a}_z \qquad \begin{array}{c} k^2 = k_x^2 + k_z \\ \therefore k = \beta \text{ formedia} \\ \text{Where } k = \end{array}$			$+ k_z^2 = \omega^2 \mu \epsilon$ ossless $ \mathbf{k} $; k k k k	$\mathbf{x} \times \mathbf{E} = \omega \mu \mathbf{H}$ $\times \mathbf{H} = -\omega \varepsilon \mathbf{E}$ $\cdot \mathbf{H} = 0$ $\cdot \mathbf{E} = 0$
Snell's Laws:	Reflection: $\theta_r = \theta_i$			Refraction: $n_1 \sin \theta_i = n_2 \sin \theta_t$		$n_i = n_2 \sin \theta_t$
Parallel Polarization: (parallel to	Fresnel's Equations for Para Polarization:	llel	1 +	$\Gamma_{\parallel} = \tau_{\parallel} \left(\frac{c c}{c c} \right)$	$\left(\frac{\cos \theta_t}{\cos \theta_i}\right)$	
the plane of incidence, xz-plane will	The plane of incidence, z-plane will $\Gamma_{\parallel} = \frac{E_{ro}}{E_{io}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$		Brewster Angle: θ_i when $\Gamma_{\parallel} = 0$ $\sin^2 \theta_{B_{\parallel}} = \frac{1 - \mu_2 \varepsilon_1 / \mu_1 \varepsilon_2}{1 - (\varepsilon_1 / \varepsilon_2)^2}$			
always be the plane of incidence)	always be the plane of incidence) $\tau_{\parallel} = \frac{E_{to}}{E_{io}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$			For non-magnetic media: $\sin \theta_{B_{\parallel}} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1 + \varepsilon_2}} \qquad \tan \theta_{B_{\parallel}} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}$		

	Fresnel's Equations for Perpendicular Polarization:					
	$\Gamma_{-} - \frac{E_{ro}}{E_{ro}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{1 - \eta_1 \cos \theta_t}$	$\tau = \frac{E_{to}}{E_{to}}$	$2\eta_2\cos\theta_i$	$1 + \Gamma_{\perp} = \tau_{\perp}$		
Perpendicular	$\Gamma_{\perp} = E_{io} = \eta_2 \cos \theta_i + \eta_1 \cos \theta_t$	E_{io}	$- \eta_2 \cos \theta_i + \eta_1 \cos \theta_t$			
(Perpendicula	Brewester angle:	If $\varepsilon_1 = \varepsilon_2$, then the Brewester ang	gle for		
r to the plane	$1 - \mu_1 \varepsilon_2 / \mu_2 \varepsilon_1$	perpendi	cular polarization can be	found from:		
of incidence)	$\sin^2 \theta_{B_{\perp}} = \frac{1}{1 - (\mu_1/\mu_2)^2}$		$\int \mu_2$	$\sqrt{\mu_2}$		
	Only exists for magnetic media $\sin \theta_{B_{\perp}} =$		$\sqrt[n]{\mu_1 + \mu_2}$ ta	$\ln \theta_{B_{\perp}} = \sqrt{\frac{\mu_{2}}{\mu_{1}}}$		
	Parallel Polarization:		Perpendicular Polarizati	ion:		
	Ei will have components along ax a	and a z,	E _i will only have a compo	onent along a _v ,		
Incident field	whose magnitudes are: $F = -F_{\rm cos}(\theta_{\rm c})$ (positive x)		whose magnitudes is:	υ τ		
components	$E_{i0x} = E_{i0} \cos(\theta_i) \text{ (positive x)}$ $E_{i0x} = E_{i0} \sin(\theta_i) \text{ (negative z)}$		E_{i0}			
based on type			H _i will have components	along a _x and a _z ,		
oi polarization:	Hi Will Only have a component alo whose magnitude is:	ng a y,	whose magnitudes are:			
	E_{i0}		$H_{i0x} = \frac{E_{i0}}{n} \cos(\theta_i)$ (neg	ative x)		
	$H_{i0} = \frac{\pi}{\eta}$		$H_{i0z} = rac{E_{i0}}{\eta} \sin(\theta_i)$ (positive z)			
	$\theta_t = \frac{\pi}{2} \to \theta_i = \theta_c$					
Critical angle:			If $\varepsilon_1 > \varepsilon_2 \rightarrow \theta_t > \theta_i \forall$	θ_i		
(wave	If $\varepsilon_1 < \varepsilon_2 \rightarrow \theta_t < \theta_i \forall \ \theta_i$		$\overline{\varepsilon_2}$ n_2			
traveling from	Critical angle does not exist.		$\therefore \sin(\theta_c) = \sqrt{\frac{z}{\varepsilon_1}} = \frac{z}{n_1}$	$= \tan \left(\theta_{B \parallel} \right)$		
medium 1 to medium 2)	If $\varepsilon_1 > \varepsilon_2 \wedge \theta_t = \frac{\pi}{2}$:	L	N			
	$\Gamma_{\perp} = 1 \wedge \tau$	$z_{\perp} = 2 \wedge 1$	$\Gamma_{\parallel} = -1 \wedge \tau_{\parallel} = \frac{2\eta_2}{n_1}$			
Linear		0.1.2	<u> </u>			
Polarization:	$\Delta \phi = \phi_y - \phi_x = n\pi, \qquad n =$	• 0, 1, 2, .	•• Or if either E_{x0} or E_{y0}	is equal to zero		
Circular Polarization:	$\Delta \phi = \phi_y - \phi_x = \pm (2n+1)\pi/2, n = 0, 1, 2, \dots$ and $E_{ox} = E_{oy} = E_o$					
Elliptical	$\Delta \phi = \phi_y - \phi_x = \pm (2n + 1)\pi/2, n = 0, 1, 2, \dots$ and $E_{ox} \neq E_{oy}$					
Polarization:	Or if $\Delta \phi \neq \frac{n\pi}{2} \forall n$: integer, tilte	ed ellipse				
	$P_{ava} =$	$ E_{x0} ^2 +$	$ E_{y0} ^2 + E_{z0} ^2$			
Dannam			2η			
Power:	Isotropic: power is distibuted eve	nly over th	ne surface, מ			
		$P_{avg} =$	$\frac{r_{total}}{\Lambda \pi r^2}$			
ı İ	1		7/17			

Parameters	Coaxial Line	Two-Wire Line	Planar Line
$R\left(\Omega/\mathrm{m} ight)$	$\frac{1}{2\pi\delta\sigma_c}\left[\frac{1}{a}+\frac{1}{b}\right]$	$\frac{1}{\pi a \delta \sigma_c}$	$\frac{2}{w\delta\sigma_c}$
	$(\delta \ll a, c - b)$	$(\delta \ll a)$	$(\delta \ll t)$
L(H/m)	$\frac{\mu}{2\pi}\ln\frac{b}{a}$	$\frac{\mu}{\pi}\cosh^{-1}\frac{d}{2a}$	$\frac{\mu d}{w}$
G (S/m)	$\frac{2\pi\sigma}{\ln\frac{b}{a}}$	$\frac{\pi\sigma}{\cosh^{-1}\frac{d}{2a}}$	$\frac{\sigma w}{d}$
<i>C</i> (F/m)	$\frac{2\pi\varepsilon}{\ln\frac{b}{a}}$	$\frac{\pi\varepsilon}{\cosh^{-1}\frac{d}{2a}}$	$(w \stackrel{\frac{\varepsilon w}{d}}{\gg} d)$
* 1		d d d	2

Chapter 11:

 $^{*}\delta = \frac{1}{\sqrt{\pi f \mu_{c} \sigma_{c}}} = \text{skin depth of the conductor; } \cosh^{-1} \frac{d}{2a} \simeq \ln \frac{d}{a} \text{ if } \left[\frac{d}{2a}\right]^{2} \gg 1.$

Voltage for Δz increment of a T.L.:	$-\frac{\partial V(z,t)}{\partial z} = F$	$RI(z,t) + L \frac{\partial I(z,t)}{\partial t}$	Phasors: $-\frac{dV_s}{dz} = (R + \frac{1}{2})$ Series impeda	Thasors: $-\frac{dV_s}{dz} = (R + j\omega L)I_s$ where the series impedance per meter: $Z = R + j\omega L$		
Current for ∆z increment of a T.L.:	$-\frac{\partial I(z,t)}{\partial z} = GV(z,t) + C\frac{\partial V(z,t)}{\partial t}$		Phasors: $-\frac{dI_s}{dz} = (G + j\omega C)V_s$ Shunt admittance per meter: $Y = G + j\omega C$			
Wave equations for Voltage and Current:	$\frac{d^2 V_s}{dz^2} - \gamma^2 V_s = 0$			$\frac{d^2I_s}{dz^2} - \gamma^2 I_s = 0$		
	$\gamma = lpha + jeta$	$R = \sqrt{(R + j\omega L)}$	$(G + j\omega C)$	 α: attenuation constant β: phase constant 		
Propagation constant:	$\gamma = \sqrt{ZY}$	Setting R = 0: $\gamma = j\omega\sqrt{LC} \left[1 \right]$	$\left[-j\frac{G}{\omega C}\right]^{\frac{1}{2}} \rightarrow c$	$\sqrt{LC} = \sqrt{\mu\varepsilon} \wedge \frac{G}{\omega C} = \frac{\sigma}{\omega\varepsilon}$		
Wavelength and Phase velocity:		$\lambda = \frac{2\pi}{\beta}$		$u = \frac{\omega}{\beta} = f\lambda$		
Characteristic Impedance (in	$Z_0 = R_0 + jX_0 = \sqrt{\frac{Z}{Y}}$		Characteristic Admittance: $Y_0 = \frac{1}{Z_0}$			
52)	R ₀ : Characterist	ic Resistance	X ₀ : Chara	X ₀ : Characteristic Reactance		

Case	$\begin{array}{c} \text{Propagation Constant} \\ \gamma = \alpha + j\beta \end{array} \begin{array}{c} \text{Charac} \\ Z_o \end{array}$	$= R_{o} + jX_{o}$
General	$\sqrt{(R+j\omega L)(G+j\omega C)}$	$\sqrt{\frac{R+j\omega L}{G+j\omega C}}$
Lossless	$0 + j\omega\sqrt{LC}$	$\sqrt{\frac{L}{C}} + j0$
Distortionless	$\sqrt{RG} + j\omega\sqrt{LC}$	$\sqrt{\frac{L}{C}} + j0$
Solutions to Wave equations:	$V_{s}(z) = V_{o}^{+} e^{-\gamma z} + V_{o}^{-} e^{\gamma z}$ $\longrightarrow +z -z \leftarrow$	$I_{s}(z) = I_{o}^{+} e^{-\gamma z} + I_{o}^{-} e^{\gamma z}$ or $I_{s}(z) = \frac{V_{o}^{+}}{Z_{o}} e^{-\gamma z} - \frac{V_{o}^{-}}{Z_{o}} e^{\gamma z}$
For a T.L. of infinite length:	Reflected voltage vanishes: $V_s(z) = V_o^+ e^{-\gamma z}$	Reflected Current vanishes: $I_s(z) = rac{V_o^+}{Z_o} e^{-\gamma z}$
Lossless Line: R = G = 0	Z_0 is pure real/resistive: $Z_0 = \sqrt{\frac{L}{c}}$	Phase velocity is constant: $u_p = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\varepsilon}}$ No distortion, no dispersion.
	$\alpha = 0$	$\beta = \omega \sqrt{LC} = \omega \sqrt{\mu \varepsilon} = \omega \frac{z}{z_0}$
Distortionless Line: R G	Z_0 is pure real/resistive: $Z_0 = \sqrt{\frac{L}{c}} = \sqrt{\frac{L}{c}}$	$\sqrt{\frac{R}{G}}$ Phase velocity is constant: $u_p = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\varepsilon}}$ No distortion, no dispersion
$\overline{L} = \overline{C}$	$\alpha = R \sqrt{\frac{C}{L}} = \sqrt{RG} = \frac{R}{R_0}$	$\beta = \omega \sqrt{LC} = \omega \sqrt{\mu \varepsilon} = \omega \frac{L}{Z_0}$
Lossless or Distortionless Coaxial line:	$Z_0 = \frac{\eta}{2\pi} \ln(b/a) = 60 \sqrt{\frac{\mu}{\varepsilon_1}}$	$\frac{\mu_r}{E_r} \ln(b/a)$ b: radius of outer circle a: radius of inner circle
	At = _ 0;	
Wave equations continued:	At $z = 0$: $V_o^+ = \frac{1}{2}(V_o + Z_o I_o)$ $V_o^- = \frac{1}{2}(V_o - Z_o I_o)$	At $Z = I$: $V_{o}^{+} = \frac{1}{2} (V_{L} + Z_{o}I_{L})e^{\gamma \ell}$ $V_{o}^{-} = \frac{1}{2} (V_{L} - Z_{o}I_{L})e^{-\gamma \ell}$
Impedance at distance z' from load: (z' = l-z)	Lossy: $Z(z') = Z_0 \frac{Z_L + Z_0 \tanh(\gamma z')}{Z_0 + Z_L \tanh(\gamma z')}$	Lossless: $Z(z') = Z_0 \frac{Z_L + jZ_0 \tan(\beta z')}{Z_0 + jZ_L \tanh(\beta z')}$

General input impedance:	$Z_{ m in}=rac{V_{s}(z)}{I_{s}(z)}=$	$= \frac{Z_{\rm o}(V_{\rm o}^+ + V_{\rm o}^-)}{V_{\rm o}^+ - V_{\rm o}^-}$.)	Z _{in}	$= Z_0 \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}}$		
Input	Lossy:		Loss	less:			
impedance of	$Z_{\rm in} = Z_{\rm o} \left[\frac{Z_L + Z_L}{Z_L} \right]$	$z_{\rm in} = Z_0 \left[\frac{Z_L + Z_0 \tanh \gamma \ell}{Z_{\rm in} - Z_0} \right] \qquad Z_{\rm in} = Z_0 \left[\frac{Z_L + jZ_0 \tan \beta \ell}{Z_{\rm in} - Z_0} \right]$					
transmission line:	$[Z_o + Z_L \tanh \gamma \ell] = [Z_o + jZ_L \tan \beta \ell]$ Where the electrical length is βl (in radians)				$Z_L \tan \beta \ell$		
Voltage	V ⁻						
reflection coefficient:	$\Gamma(z) = \frac{V_{\rm o}}{V_{\rm o}^+} e^{2\gamma z}$			$\Gamma(z') = \frac{Z_L - Z_0}{Z_L + Z_0} e^{-2\gamma z'}$			
Poflection	$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \Gamma_L e^{j\theta_{\Gamma_L}}$			$\Gamma(z') = \Gamma_L e^{-2\gamma z'} \qquad \frac{ \Gamma(z') = \Gamma_L e^{-2\alpha z'}}{\theta_{\Gamma(z)} = \theta_{\Gamma} - 2\beta z}$			
coefficients	For a lossless line				Current reflection		
at load and	$\Gamma(z') = \Gamma_L e^{-j2\beta z'}$	$\rightarrow \Gamma(z') = \Gamma_L \wedge$	$\theta_{\Gamma_L} = \theta_{\Gamma_L} - 2\beta z'$	coefficient: $-\Gamma(z')$			
eisewiiere.	$Z(z) = Z_0$	$\frac{1+\Gamma(z)}{1-\Gamma(z)}$		$\Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0}$			
Standing	V _{max}	I_{max} _ 1 + I	Γ_L	I T	$S = \frac{S-1}{2}$		
Wave Ratio:	$s = \frac{1}{V_{\min}} = \frac{1}{I_{\min}} = \frac{1}{1 - \Gamma_L }$			$ 1_{L} = \frac{1}{S+1}$			
	$ Z_{\rm in} _{\rm max} = \frac{V_{\rm max}}{I_{\rm min}} = sZ_{\rm o}$			$ Z_{\rm in} _{\rm min} = \frac{V_{\rm min}}{I_{\rm max}} = \frac{Z_{\rm o}}{s}$			
Max & Min input	$z'_{max} = \frac{\theta_{\Gamma_L} + 2n\pi}{2\beta}$			z' _{min}	$=\frac{\theta_{\Gamma_L}+(2n+1)\pi}{2\beta}$		
impedances:	$V_{max} = $	$V_0^+ \cdot (1+ \Gamma)$	I _{min} =	$= \frac{ V_0^+ }{Z_0} \cdot (1 - \Gamma)$			
	$V_{min} = V_0^+ \cdot (1 - \Gamma)$			$I_{max} = \frac{ V_0^+ }{Z_0} \cdot (1 + \Gamma)$			
	$Z_L = \infty$	$\Gamma_L = 1$		$ heta_{\Gamma_L}=0$	$s = \infty$		
Open- Circuited	$ \mathbf{V}(z) = 2 \mathbf{V}_0^+ \cdot \cos(\beta z') $			$Z(z') = -jZ_0\cot\left(\beta z'\right)$			
line:	$2 V_0^+ = V_L $			$ \mathbf{I}(z) = \frac{2 \mathbf{V}_0^+ }{Z_0} \cdot \sin(\beta z') $			
	$Z_L = 0$	$\Gamma_L = -1$		$ heta_{\Gamma_L} = \pi$	$s = \infty$		
Short- circuited line:				$Z(z') = jZ_0 \tan(\beta z')$			
	$ V(z) = I_L Z_0 \cdot \sin(\beta z') $			$ I(z) = I_L \cdot \cos(\beta z') $			
Open circuit & Short circuit impedances:	$Z_{oc}Z_{sc} = Z_0^2$			tan($(\beta l) = \sqrt{-\frac{Z_{sc}}{Z_{oc}}}$		

Matchod	$\mathbf{Z}_L = \mathbf{Z}_0$				$\Gamma_L = 0$			<i>s</i> = 1		
load:	V(z) =	V ₀ ⁺	V(z)	$= V_0^+ e^{-j\mu}$	8z	I(z	$z) = \frac{V_0^+}{Z_0} e^{-\frac{1}{2}}$	-jβz	Z($(z) = Z_0$
	$Z_L = R_L$			Γ_L is a real number						
Resistive Ioad: (lossless line)	If $R_L > R_0$:					If $R_L < R_0$:				
	$\Gamma_L > 0$	> 0 $ heta_{\Gamma_L} = 0$ $s = \frac{R_L}{R_0}$				$\Gamma_L < 0 \qquad \qquad \theta_{\Gamma_L} = \pi \qquad \qquad s = \frac{R_0}{R_L}$			$s = \frac{R_0}{R_L}$	
	$Z_{max} = \mathbf{R}_L \qquad \qquad Z_{min} = \frac{\mathbf{R}_0^2}{\mathbf{R}_L}$				$Z_{max} = \frac{{R_0}^2}{R_L} \qquad \qquad Z_{min} = R_L$					
	V _{max} & I _{min} o	ccur toge	ther wh	en:		V _{min} & I _{max} occur together at:				
	$2\beta z_{max} = 2n\pi \rightarrow z_{max} = \frac{n\lambda}{2}$				$z_{min} = \frac{n\lambda}{2}$					
	Where n = 0, 1, 2, Hence, starts at max			Where n = 0, 1, 2, Hence, starts at min						
	$ \Gamma_L = 1$ $s = \infty$ $\theta_{\Gamma_L} = 2\tan^{-1}\left(\frac{R_0}{X_L}\right)$ $ V(z) = 2$			2 V ₀	+ · cos ($\left(\beta z'-\frac{\theta_{\Gamma_L}}{2}\right)$				
Reactive	$X_L > 0$, inductive $\rightarrow 0 < \theta_{\Gamma_L} < \pi$ $X_L < 0$, capacitive $\rightarrow \pi < \theta_{\Gamma_L} < \pi$				$\pi < \theta_{\Gamma_L} < 2\pi$					
1000.	$V_{max}:$ $2\beta z'_{max} = \theta_{\Gamma_L} + 2n\pi$ $n = 0, 1, 2,$			V _{mi} 2β n =	$z'_{min} = \theta_1$ 1, 3, 5,	$\Gamma_L + r$	ιπ			
Quarter	l = (2n + 1)	$\left(1\right)\frac{\lambda}{4}, n=0$, 1, 2,			$\beta l = (2n+1)\frac{\pi}{2}$, n = 0, 1, 2,				
wave section:	$Z_{in} = \frac{Z_0^2}{Z}$			If Z	$Z_L = \infty \text{ (o.c)} \rightarrow Z_{in} = 0$ $Z_L = 0 \text{ (s.c)} \rightarrow Z_L = \infty$					
Half wave section:	$l = n \frac{\lambda}{2}$, n = 1, 2, 3,			$\beta l = n\pi$		Z _{in} :	$= Z_L$			
Power for a lossless line:	$P_{inc} = \frac{1}{2} \frac{ V_0^+ ^2}{Z_0} \qquad P_{ref} = \frac{1}{2} \cdot \frac{ V_0^- ^2}{Z_0} = \frac{1}{2} \cdot \frac{ V_0^+ ^2}{Z_0} \cdot \Gamma ^2 = \Gamma ^2 \cdot P_{inc}$					$ \Gamma ^2 \cdot P_{inc}$				
	Average power dissipated in the load: $P_{\text{ave}} = \frac{ V_{\text{o}}^{+} ^{2}}{2Z_{\text{o}}} (1 - \Gamma ^{2})$									

Chapter 12:

Propagation:	$k = \omega \sqrt{\mu \varepsilon}$		$-k_x^2 - k_y^2 + \gamma^2 = -k^2$		
WG Electric Field Distribution: (z)	$E_{zs}(x, y, z) = (A_1 \cos k_x x + A_2 \sin k_x x)(A_3 \cos k_y y + A_4 \sin k_y y)e^{-\gamma z}$				
WG Magnetic Field Distribution:	$H_{zs}(x, y, z) = (B_1 \cos k_x x + B_2 \sin k_x x)(B_3 \cos k_y y + B_4 \sin k_y y)e^{-\gamma z}$				
WG Electric	$E_{xs} = -\frac{\gamma}{h^2} \frac{\partial E_{zs}}{\partial x} - \frac{j\omega\mu}{h^2}$	$\frac{\partial H_{zs}}{\partial y}$	$E_{ys} = -\frac{\gamma}{h^2} \frac{d}{dr}$	$\frac{\partial E_{zs}}{\partial y} + \frac{j\omega\mu}{h^2} \frac{\partial H_{zs}}{\partial x}$	
& Magnetic Fields Distribution: (in terms of E _z &	$H_{xs} = \frac{j\omega\varepsilon}{h^2} \frac{\partial E_{zs}}{\partial y} - \frac{\gamma}{h^2} \frac{\partial E_{zs}}{\partial y}$	$\frac{\partial H_{zs}}{\partial x}$	$H_{ys} = -\frac{j\omega\varepsilon}{h^2}\frac{\partial E_{zs}}{\partial x} - \frac{\gamma}{h^2}\frac{\partial H_{zs}}{\partial y}$		
H _z)	$h^2 = \gamma^2 + k^2 = k_x^2 + k_$	$-k_y^2$	$k_x = \frac{m\pi}{a}$	$k_y = \frac{n\pi}{b}$	
Cutoff Frequency:	$(f_c)_{mn} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{m}{a}\right)^2}$	$\left(\frac{n}{b}\right)^2$	$\frac{1}{\sqrt{\mu\varepsilon}} =$	$= u = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$	
Phase Constant:	$\beta = \omega \sqrt{\mu \varepsilon} \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$		$\beta = k \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$		
Wavelengths:	Cutoff: $\lambda_c = \frac{u}{f_c} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}$	Guide: t. λ: wavele	$\lambda_g = rac{2\pi}{eta} = rac{1}{\sqrt{1}}$ ngth in unbounded med	$\frac{\lambda}{-\left(\frac{f_c}{f}\right)^2}$ dium, $\lambda = \frac{2\pi}{k} = \frac{u}{f}$	
	$\frac{1}{\lambda^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda_g^2}$				
Phase Velocity:	$u_p = \frac{\omega}{\beta} = \frac{u}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$		u_p	$=\frac{\lambda_g}{\lambda}\cdot u$	

	$(m\pi x)$ $(n\pi y)$	$H_z = 0$				
	$E_{zs} = E_0 \sin\left(\frac{a}{a}\right) \sin\left(\frac{b}{a}\right) e^{-\gamma z}$	$m = 1, 2, 3, \dots$ $n = 1, 2, 3, \dots$				
	$E_{xs} = -\frac{\gamma}{h^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$E_{ys} = -\frac{\gamma}{h^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$				
	$H_{xs} = \frac{j\omega\varepsilon}{h^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$H_{ys} = -\frac{j\omega\varepsilon}{h^2} \left(\frac{m\pi}{a}\right) E_{\rm o} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$				
Transverse	Cutoff case:	$\gamma = 0$ or $\alpha = 0 = \beta$				
Magnetic Mode: TM _{mn}	$k^2 = \omega^2 \mu \varepsilon = \left[\frac{m\pi}{a}\right]^2 + \left[\frac{n\pi}{b}\right]^2$	$f = f_c$ Subscript "c": cutoff				
	Evanescent case:	$\gamma = lpha, \qquad \qquad eta = 0$				
	$k^2 = \omega^2 \mu \varepsilon < \left[\frac{m\pi}{a} ight]^2 + \left[\frac{n\pi}{b} ight]^2$	$\boldsymbol{lpha} = \sqrt{\left[rac{m\pi}{a} ight]^2 + \left[rac{n\pi}{b} ight]^2 - k^2}$				
	Propagating case:	$\gamma = i\beta, \qquad \alpha = 0$				
	$k^{2} = \omega^{2} \mu \varepsilon > \left[\frac{m\pi}{a} \right]^{2} + \left[\frac{n\pi}{b} \right]^{2}$	$\beta = \sqrt{k^2 - \left[\frac{m\pi}{a}\right]^2 - \left[\frac{n\pi}{b}\right]^2}$				
		$E_z = 0$				
Transverse Electric Mode: TE _{mn}	$H_{zs} = H_{\rm o} \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{m\pi y}{b}\right) e^{-\gamma z}$	m = 0, 1, 2, $n = 0, 1, 2,m or n can be 0 but not simultaneously$				
	$E_{xs} = \frac{j\omega\mu}{h^2} \left(\frac{n\pi}{b}\right) H_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$E_{ys} = -\frac{j\omega\mu}{h^2} \left(\frac{m\pi}{a}\right) H_{\rm o} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$				
	$H_{xs} = \frac{\gamma}{h^2} \left(\frac{m\pi}{a}\right) H_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$H_{ys} = \frac{\gamma}{h^2} \left(\frac{n\pi}{b} \right) H_0 \cos\left(\frac{m\pi x}{a} \right) \sin\left(\frac{n\pi y}{b} \right) e^{-\gamma z}$				
	Same cases as for TM but lowest f_c mode (dominant) is TE ₁₀ (if $a > b$) or TE ₀₁ (if $a < b$)					
	TM _{mn} :	TE _{mn} :				
Wave Impedances:	$\eta_{TM} = \frac{E_x}{H_y} = \frac{-E_y}{H_x} = \frac{\beta}{\omega\varepsilon}$	$\eta_{TE} = \frac{E_x}{H_y} = \frac{-E_y}{H_x} = \frac{\omega\mu}{\beta}$				
	$\eta_{TM} = \frac{k}{\omega\varepsilon} \sqrt{1 - \left(\frac{f_c}{f}\right)^2} \qquad \eta = \frac{k}{\omega\varepsilon} = \sqrt{\frac{\mu}{\varepsilon}}$	$\eta_{TE} = \frac{\eta}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$				
	$\eta_{TM}\cdot\eta_{T}$	$T_E = \eta^2$				
Group Velocity:	$u_g = \frac{\partial \omega}{\partial \beta} = u \cdot \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$	$u_g \cdot u_p = u^2$				

	$\alpha = \alpha_c + \alpha_d$					
Attenuation:	$\alpha_{c} _{TE_{10}} = \frac{2 \cdot R_{s}}{b \cdot \eta \sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} \cdot \left(\frac{1}{2} + \frac{b}{a} \left(\frac{f_{c}}{f}\right)^{2}\right)$ Only valid for TE ₁₀ , R _s as defined in chapter 10	$\alpha_d = \frac{\sigma_d \cdot \eta}{2\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$ Holds for any waveguide mode				