Antennas:

Fields in terms of Magnetic Vector Potential:	$\boldsymbol{B}_{s} = \nabla \times \boldsymbol{A}_{s} \qquad \boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H}$	$\boldsymbol{E}_{s} = -j\omega \left[\frac{1}{k^{2}} \nabla \nabla \cdot \boldsymbol{A}_{s} - j\omega \boldsymbol{A}_{s} \right]$		
Dipole centered at 0 As	$A_s(\mathbf{r}) = \frac{\mu}{4\pi} \iiint_{V_o} \frac{J_s(\mathbf{r}')}{ \mathbf{r} - \mathbf{r}' } e^{-jk \mathbf{r} - \mathbf{r}' } dv'$	$A_s(\mathbf{r}) \approx \frac{\mu}{4\pi} \int_{-\Delta l/2}^{\Delta l/2} \frac{I_o \mathbf{a}_z}{(\mathbf{r} - z' \cos \theta)} e^{-jk(\mathbf{r} - z' \cos \theta)} dz'$		
Infinitesimal Dipole A _s :	$A_s(r) \approx \frac{\mu I_o \Delta l}{4\pi r} e^{-jkr} (\cos\theta a_r - \sin\theta a_\theta)$			
Infinitesimal Dipole Near Fields:	$\boldsymbol{E}_{s} = -\frac{j \eta I_{o} \Delta l}{4 \pi r^{3} k} \left[2 \cos \theta \boldsymbol{a}_{r} + \sin \theta \boldsymbol{a}_{\theta} \right] e^{-jkr}$			
Infinitesimal Dipole Far Fields:	$E_{\theta s} = \frac{j \eta k I_o \Delta l}{4 \pi r} \sin \theta \ e^{-jkr}$	$H_{\phi s} = \frac{jkI_o\Delta l}{4\pi r}\sin\theta \ e^{-jkr} = \frac{E_{\theta s}}{\eta}$		
Cartesian – Spherical Conversion:	$\begin{bmatrix} A_r \\ A_{\theta} \\ A_{\phi} \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{bmatrix} \begin{bmatrix} A_r \\ A_{\theta} \\ A_{\phi} \end{bmatrix}$	$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\ \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} A_r \\ A_\theta \\ A_\phi \end{bmatrix}$		
	$d\mathbf{S} = r^2 \sin\theta \ d\theta \ d\phi \ \mathbf{a}_r \qquad dv = r^2 \sin\theta \ dr \ d\theta \ d\phi$			
Power Equations:	$ \Theta_{avg} = \frac{1}{2} \operatorname{Re} \{ S \} = \frac{1}{2} \operatorname{Re} \{ E_s \times H_s^* \} $ $ P_{rad} = \iint_S \Theta_{s} = \frac{1}{2} \operatorname{Re} \{ E_s \times H_s^* \} $	$P_{rad} = \int_{0}^{2\pi} \int_{0}^{\pi} \left[\mathcal{O}_{avg}(r = r_o) \cdot \boldsymbol{a}_r \right] r_o^2 \sin\theta d\theta d\phi$		
Radiation Resistance:	$P_{rad} = I_{s, rms}^2 R_{rad} = \frac{1}{2} I_{s, peak}^2 R_{rad}$			
Infinitesimal		$= \frac{(120 \pi) 4 \pi^2 I_o^2 \Delta I^2}{12 \pi \lambda^2} = 40 \pi^2 \left(I_o \frac{\Delta I}{\lambda} \right)^2$		
Dipole Radiation Resistance:	$P_{rad} = \frac{1}{2} I_o^2 R_{rad} = 40 \pi^2 \left(I_o \frac{\Delta l}{\lambda} \right)^2$	$R_{rad} = 80 \pi^2 \left(\frac{\Delta l}{\lambda}\right)^2$		
Dinale	$I_{s}(z') = I_{o} \sin \left[k \left(\frac{l}{2} - z' \right) \right] \qquad dE_{\theta s} = \frac{j \eta k I_{s}(z')}{4 \pi r}$	$\frac{dz'}{\sin\theta} e^{-jk(r-z'\cos\theta)} \qquad E_{\theta s} = \int dE_{\theta s}$		
Dipole Antenna:	$E_{\theta s} \approx j \frac{\eta I_o e^{-jkr}}{2 \pi r} F(\theta)$ $F(\theta) = \frac{\cos \left(\frac{kl}{2} \cos \frac{kl}{2} \cos \frac{kl}{2$	$\frac{\theta - \cos\left(\frac{kl}{2}\right)}{\sin \theta} \qquad H_{\phi s} = \frac{E_{\theta s}}{\eta} \approx j \frac{I_o e^{-jkr}}{2\pi r} F(\theta)$		

Half-Wave Dipole in Air:	$F(\theta) = \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$	$E_{\theta s} \approx j \frac{\eta_o I_o}{2 \pi r} e^{-jkr} \frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta} \qquad H_{\phi s} \approx j \frac{I_o}{2 \pi r} e^{-jkr} \frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}$			$e^{-jkr}\frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$
	$ \Theta_{avg} = \frac{1}{2} \eta_o H_{\phi s} ^2 a_r $	$P_{rad} = \int_{0}^{2\pi\pi} \int_{0}^{\pi} \left[\frac{\eta_o}{2} \left(\frac{I_o}{2\pi r_o} \frac{\cos\left(\frac{\pi}{2} c\right)}{\sin \theta} \right) \right]$	$\left \frac{\cos\theta}{\theta}\right ^2$ $\left r_o^2\sin\thetad\thetad\phi\right $		$.56 I_o^2 = \frac{1}{2} I_o^2 R_{rad}$ $36.56) \approx 73 \Omega$
Antenna Impedance:	$S_s = P + jQ$ $P = P_{rad} + F$	$P_{loss} = \frac{1}{2} I_s ^2 R_{rad} + \frac{1}{2} I_s ^2 R$ Power radiated by the antenna Power dissipation by the antenna	ated Power s	tored in field of	$\frac{P_{rad}}{P_{rad} + P_{loss}} = \frac{R_{rad}}{R_{rad} + R_{loss}}$
Monopole Impedance:	$(Z_A)_{monopole} = \frac{1}{2}(Z_A)_{dipole}$	$(Z_A)_{monopole}^{quarter-wave} = \frac{1}{2}$	$(Z_A)_{dipole}^{half-wave} = \frac{1}{2} (Z_A)_{dipole}^{half-wave}$	$73 + j42.5)\Omega =$	$(36.5 + j21.25)\Omega$
Small Loop Antenna:	$A_s(\mathbf{r}) \approx \frac{\mu I_o \Delta S}{4 \pi r^2} (1 + jkr) e^{-jkr} \sin \theta$	\mathbf{a}_{Φ} $H_{rs} = jk \frac{I_o \Delta S}{2\pi} \cos \theta \left[\frac{1}{r^2} - \frac{j}{kr^3} \right]$	$e^{-jkr} H_{\theta s} = jk \frac{I_o \Delta S}{4 \pi} \sin \theta$	$\left[\frac{jk}{r} + \frac{1}{r^2} - \frac{j}{kr^3}\right]e^{-jkr}$	$E_{\phi s} = -j \eta k \frac{I_o \Delta S}{4 \pi} \sin \theta \left(\frac{jk}{r} + \frac{1}{r^2} \right) e^{-jkr}$
Small Loop Far Fields:	$H_{\theta s} = -k^2 \frac{I_o \Delta S}{4 \pi r} \sin \theta \ e^{-c}$	$E_{\phi s}$	$= \eta k^2 \frac{I_o \Delta S}{4 \pi r} \sin \theta$	g-jkr	
Small Loop Radiated Power and resistance:	$P_{rad} = \frac{\eta_o k^4 I_o^2 \Delta S^2}{12 \pi}$ replace η_0 with η	In air: $P_{rad} = \frac{160 \pi^4 I_o^2 \Delta S^2}{\lambda^4} =$	$\frac{1}{2}I_o^2R_{rad}$	$R_{rad} = \frac{3}{2}$	$\frac{320\pi^4 S^2}{\lambda^4}$
Radiation Intensity:	$P_{rad} = \int_{0}^{2\pi \pi} \int_{0}^{\pi} \Theta_{avg} r^2 \sin\theta d\theta d\phi$	$O_{avg}r^{2} = U(\theta, \phi)$ $U_{avg} = \frac{\int_{0}^{2\pi\pi} \int_{0}^{\pi} U(\theta, \phi) d\Omega}{4\pi} = \frac{1}{2}$	0 0	$U(\theta, \phi) \sin \theta d$	$\theta d\phi = \int_{0}^{2\pi} \int_{0}^{\pi} U(\theta, \phi) d\Omega$ $d\Omega = \sin\theta d\theta d\phi$
Directive Gain and Directivity:	$G_d(\theta, \phi) = \frac{U(\theta, \phi)}{U_{avg}} = \frac{4\pi}{G_d(dB)}$ $G_d(dB) = 10\log_{10}G_d(\theta_o, \phi)$	(isotropic radiator	$D = [G_d(\theta, \phi)]$ $D(dB) = 10\log_{10}$	w8	$\frac{\mathbf{J}_{\max}}{P_{rad}} = \frac{4\pi \left[U(\theta, \phi) \right]_{\max}}{P_{rad}}$
Power Gain:	$G_p(\theta, \phi)$	$=\frac{4\pi\ U(\theta,\phi)}{P_{in}}$	$P_{in} = P_{rad} + A_{rad}$	P _{loss}	
Half-power point and Nulls:	Half-power point: $U(\theta)$ HPBW: 2θ at which		Null points: FNBW:	U(heta) = 2 heta at which U	
Antenna Field Regions:	Reactive near field: $r < 0.62 \sqrt{D^3/\lambda}$	Radiating near field (Fr $0.62\sqrt{D^3/\lambda} < r < 2$	•	Far field (Fra r	unhofer): $> 2D^2/\lambda$

Pattern Multiplicatio n Theorem:	Array pat	Array pattern = Array element pattern × Array factor (AF)						
Two element array of Hertzian dipoles:	$r_1 \approx r + \frac{d}{2}\cos\theta$ $r_2 \approx r - \frac{d}{2}\cos\theta$		$E_{\theta 1} \approx j \eta \frac{k I_o e^{j0} \Delta I}{4 \pi r} \sin \theta e^{-jk[r + (d/2)\cos \theta]}$ $E_{\theta 2} \approx j \eta \frac{k I_o e^{j\alpha} \Delta I}{4 \pi r} \sin \theta e^{-jk[r - (d/2)\cos \theta]}$		$E_{\theta 1} = E_{\theta 1} + E_{\theta 1} \approx j \eta \frac{k I_o \Delta I}{4 \pi r} \sin \theta e^{-jkr} \Big[e^{-jk(d/2)\cos \theta} + e^{j\alpha} e^{jk(d/2)\cos \theta} \Big]$ Element Pattern (infinitesimal dipole at the origin) Array Factor (AF) $AF = 2e^{j\frac{\alpha}{2}} \cos \Big[\frac{1}{2} (k d \cos \theta + \alpha) \Big]$ α : phase difference between elements		_	
General N- Element Linear Array:	$r_1 = r$ $r_2 \approx r - d\cos\theta$ $r_3 \approx r - 2d\cos\theta$ \vdots $r_N \approx r - (N - 1)d\cos\theta$	N-element a origin:	$\frac{I_2 = I_o e^{j\alpha} \qquad I_3 = I_o e^{j2\alpha} \qquad - \qquad I_N = I_o e^{j(N-1)\alpha}}{\text{ement array centered at}}$ $E_{01} \approx I_o \frac{e^{-jkr}}{4\pi r} = E_o$ $E_{02} \approx I_o e^{j\alpha} \frac{e^{-jkr}}{4\pi r} = E_o$ $E_{02} \approx I_o e^{j\alpha} \frac{e^{-jk(r-d\cos\theta)}}{4\pi r} = E_o$ $E_{03} \approx I_o e^{j2\alpha} \frac{e^{-jk(r-d\cos\theta)}}{4\pi r} = E_o$ $E_{03} \approx I_o e^{j2\alpha} \frac{e^{-jk(r-2d\cos\theta)}}{4\pi r} = E_o$ $E_{03} \approx I_o e^{j2\alpha} \frac{e^{-jk(r-d\cos\theta)}}{4\pi r} = E_o$ $E_{03} \approx I_o e^{j2\alpha} \frac{e^{-jk(r-d\cos\theta)}}{4\pi r} = E_o$ $E_{03} \approx I_o e^{j2\alpha} \frac{e^{-jk(r-d\cos\theta)}}{4\pi r} = E_o$		$= E_o e^{j2(\alpha + kd\cos\theta)}$	$\begin{split} E_0 &= E_{01} + E_{02} + E_{03} + \dots + E_{0N} \\ &= E_0 \left[1 + e^{J(a + k d \cos \theta)} + e^{J2(a + k d \cos \theta)} + \dots + e^{J(a + $	$\frac{(N-1)(\alpha + kd\cos\theta)}{[1](\alpha + kd\cos\theta)}$ $= \alpha + kd\cos\theta$	
Array function:	Nulls: $\theta_n = co$	$e^{-1} \left[\frac{\lambda}{2\pi d} \left(-\alpha \pm \frac{2}{2} \right) \right]$	$\begin{bmatrix} n\pi \\ N \end{bmatrix}$ $n = 1, 2, 3, \\ n \neq 0, N, 2N, 3$		eaks:	$\theta_m = \cos^{-1} \left[\frac{\lambda}{2\pi d} \left(-\alpha \pm 2 \right) \right]$	m = 0, 1, 2,	
Effective area:	$A_e = \frac{P_r}{\rho_{avg}}$ $A_e = D \frac{\lambda^2}{4\pi}$	Effective a	$P_r = \frac{1}{2} \frac{ V_{Ls} ^2}{R_{rad}} = \frac{1}{2} \frac{(V_{As} /2)^2}{R_{rad}} = \frac{ V_{As} ^2}{8R_{rad}}$ Effective area for any orientation: $A_e(\theta, \phi) = G_d(\theta, \phi) \frac{\lambda^2}{4\pi}$			For an infinites $A_e = \frac{P_r}{\varrho_{avg}} = \frac{\left \frac{I}{6\varrho} \right }{\frac{1}{2}}$	imal dipole: $\frac{Z_s ^2\lambda^2}{40\pi^2} = \frac{3\lambda^2}{8\pi} = \frac{3\lambda^2}{24\pi}$ $\frac{1}{40\pi}$	directivity
Friis Transmission Formula:	$ \varrho_{avg} = \frac{1}{41} $	$\frac{P_t}{\pi r^2} G_{dt}$	$P_r = \mathcal{O}_{avg} A_e$	r	J	$P_r = G_{dt} G_{dr} \left(\frac{7}{4\pi} \right)$	$\left(\frac{1}{\pi r}\right)^2 P_t$	
Radar:	$P_r = \frac{\sigma \lambda^2 G_d}{(4\pi)^3 r}$	$\frac{1}{2} \frac{G_{dt}}{r^2} P_{rad}$	r_1 : distance from Tx to object r_2 : distance from object to Rx σ : radar cross section (RCS) of object		For a r	monostatic radar: $r = \left[\frac{\sigma \lambda^2}{(}\right]$	Tx = Rx, r ₁ = r ₂ = r $\frac{P_{dr}G_{dt}}{(4\pi)^3} \frac{P_{rad}}{P_r} \Big]^{1/4}$	

Radio Wave Propagation:

Free space path loss:	$L_0 = \left(\frac{\lambda}{4\pi d}\right)^2$			
Multipath from a flat ground:	$ \Delta R = \underbrace{(R_1 + R_2)}_{\text{REFLECTED}} - \underbrace{R_o}_{\text{DIRECT}} $ $ E_{\text{tot}} = \underbrace{\underbrace{E_{\text{ref}}}_{\text{REFLECTED}} + \underbrace{E_{\text{dir}}}_{\text{DIRECT}}}_{\text{DIRECT}} $ $ = \left f_t(\theta_A) f_r(\theta_C) \frac{e^{-jkR_o}}{4\pi R_o} \left[1 + \Gamma \frac{f_t(\theta_B) f_r(\theta_D)}{f_t(\theta_A) f_r(\theta_C)} e^{-jk\Delta R} \right] \right $ $ F = 2 \sin\left(\frac{kh_t}{d}\right) $ $ F = 2 \sin\left(\frac$			
Maxima and minima of PPF:	Minima $kh_t \tan \psi = n\pi (n = 0, 1,, \infty)$ $\frac{2\pi}{\lambda} h_t \tan \psi = n\pi$ $\tan \psi = n\lambda / h_t$ $\tan \psi = \frac{(2n+1)\lambda}{4h_t}$			
Coverage plot:	$F=2rac{d_0}{d}\left sin\left(rac{2\pi h_t h_r}{\lambda d} ight) ight =m$ Receiver height (ht) plotted against range			
Power received:	$Pr = 4PtGtGr \left(\frac{\lambda}{4\pi d}\right)^{2} \sin^{2}\left(\frac{2\pi hthr}{\lambda d}\right)$	$P_r = P_t G_t G_r 4 \left(\frac{h_t h_r}{d^2}\right)^2$ $\sin \theta \approx \theta$ Since ht, hr < <d, <math="">\theta is small</d,>		
	Ray trajectory: $nR_e \sin \theta = \text{CONSTANT}$	R _e : actual Earth radius (6378 km), n: index of refraction, found by:		
Atmospheric refraction:	$n = \sqrt{\varepsilon_r} \text{ is found by:}$ 1) $n = 1 + \chi \rho / \rho_{\text{SL}} + \text{HUMIDITY TERM}$ χ : Gladstone-Dale constant (≈ 0.00029) ρ, ρ_{SL} : mass densities at altitude and sea level respectively $R_t = \sqrt{\left(R'_e + h_t\right)^2 - \left(R'_e\right)^2}$ $n = \frac{77.6}{T} (p + 4.810 e/T) 10^{-6} - 1$ p: air pressure (millibars) T: temperature (K) e: partial pressure of water vapor (millibars) $R_t \approx \sqrt{2R'_eh_t} \Lambda R_r \approx \sqrt{2R'_eh_r}$ $R_{RH} \approx \sqrt{2R'_eh_t} \Lambda R_r \approx \sqrt{2R'_eh_r}$ $R_{RH} \approx \sqrt{2R'_eh_t} \Lambda R_r \approx \sqrt{2R'_eh_r}$ (distance to Radio Horizon) $R_t \approx \left[1 + \frac{R_e}{\sqrt{\varepsilon_o}} \frac{d}{dh} \sqrt{\varepsilon(h)}\right]^{-1} \text{s.t.,} \left[\psi(h)\right]^2 \approx \psi_o^2 + \frac{2h}{\kappa R_e} = \psi_o^2 + \frac{2h}{R'_e} \to R'_e = \kappa R_e$ Valid with the following assumptions: 1) constant index of refraction, 2) ray paths are nearly horizontal, and 3) $\sqrt{\varepsilon_h}$ vs. h is linear over the range of $\kappa = \frac{4}{3} \to R'_e = 8500 \ km$ under normal conditions			

D . I		· ·	
Path-	๋อลเท	factor	•
ı atıı	Bann	iactoi	•

$$|F| = 1 + \rho e^{j\phi_{\Gamma}} e^{-jk\Delta R} D$$

D: divergence factor,

Approximate path-gain factor formula for interference reg

$$|F| = \left\{ \left(1 + |\Gamma| D \right)^2 - 4|\Gamma| D \sin^2 \left[\frac{\phi_{\Gamma} - k\Delta R}{2} \right] \right\}^{\frac{1}{2}}$$

$$\Delta R = \frac{2h_1h_2}{d}J(S,T) \qquad \tan \psi = \frac{h_1 + h_2}{d}K(S,T)$$

$$D = \left[1 + \frac{4S_1S_2^2T}{S(1 - S_2^2)(1 + T)}\right]^{-1/2} \qquad S_1 = \frac{d_1}{\sqrt{2R_e'h_1}}, S_2 = \frac{d_2}{\sqrt{2R_e'h_2}} \qquad h_1 = \min\{h_t, h_r\}$$

$$S = \frac{d}{\sqrt{2R_e'h_1} + \sqrt{2R_e'h_2}} = \frac{S_1T + S_2}{1 + T} \qquad T = \sqrt{h_1/h_2} \quad (< 1 \text{ since } h_1 < h_2)$$

$$\sqrt{2R_e n_1} + \sqrt{2R_e n_2}$$
 1+1

$$J(S,T) = (1 - S_1^2)(1 - S_2^2)$$

$$K(S,T) = \frac{(1 - S_1^2) + T^2(1 - S_2^2)}{1 + T^2}$$

Interference region:

$$d_1 = \frac{d}{2} + p \cos\left(\frac{\Phi + \pi}{3}\right) \qquad \Phi = \cos^{-1}\left(\frac{2R'_e(h_1 - h_2)d}{p^3}\right) \qquad p = \frac{2}{\sqrt{3}}\left[R'_e(h_1 + h_2) + \frac{d^2}{4}\right]^{1/2}$$

$$p = \frac{2}{\sqrt{3}} \left[R'_e(h_1 + h_2) + \frac{d^2}{4} \right]^{1/2}$$

Alternate form of phase difference:

$$k\Delta R = \frac{2kh_1h_2}{d}(1-S_1^2)(1-S_2^2) = v\zeta\pi$$

$$v = \frac{4h_1^{3/2}}{\lambda \sqrt{2R_e'}} = \frac{h_1^{3/2}}{1030\lambda}$$

$$\zeta = \frac{h_2 / h_1}{d / d_{RH}} (1 - S_1^2) (1 - S_2^2)$$

Distance to radio horizon:

$$d_{RH} = \sqrt{2R'_e h_1}$$

Special case in which the reflection coefficient (Γ) is -1:

$$F = \left[(1+D)^2 - 4D \cos^2 \frac{k_0 \Delta R}{2} \right]^{1/2} = \left[(1+D)^2 - 4D \cos^2 \left(\frac{\pi}{2} \nu \zeta \right) \right]^{1/2}$$

To plot the coverage diagram of the above special case, use the normalized coordinates (h₂/h₁) and d/d_T \rightarrow F = m $\frac{d}{d_T}$, where $d_T = \sqrt{2R'_e h_1}$

	For frequencies > 100 MHz:					
	$F = V_1(X)U_1(Z_1)U_1(Z_2)$					
Diffraction region:	$Z_i = h_i / H (i = 1,2)$	X = d/L				
	$L = 2\left(\frac{(R'_e)^2}{4k}\right)^{\frac{1}{3}} = 28.41\lambda^{1/3} \text{ (km)}$	$H = \left(\frac{R'_e}{2k^2}\right)^{\frac{1}{3}} = 47.55\lambda^{2/3}$ (m)				
	$V_1(X) = 2\sqrt{\pi X}e^{-2.02X}$	U ₁ is found from tables or curves				
	If the direct path's phase differs from the reflected path's	s phase, then				
	$\Delta R = n\lambda$	$n/2 \qquad (n=0,1,\dots)$				
	Assuming $\Gamma = \rho e^{j\pi} = -\rho$, then:					
Fresnel zones:	If n is even : two paths are out of phase and received signal is min .	If n is even : two paths are in phase and received signal is max .				
	$: R_0 \approx d \rightarrow R_0 \approx d_t + d_r =$	$d \therefore \ R_1 + R_2 = d + n \lambda / 2$				
	Radius of nth Fresnel zone: To find Tx and Rx locations and heights that give signal maxima: 1) reflections points should not lie on even Fresnel zones (if n even, received signal is min) 2) LOS should clear all obstacles by 0.6r ₁ to essentially give free					
	2) LOS should cle space transmission	ar all obstacles by 0.6r ₁ to essentially give free				
	Clearance height:					
	$h_c = \left(\frac{d_2h_1 + d_1h_2}{d} - h\right)\cos\theta_c$					
	Diffraction loss factor F _d : (negligible if H _c > 0.8)					
Diffraction:	$F_d = \left \frac{E_{tot}}{E_0} \right = \frac{1}{\sqrt{2}} \left \int_{-H_c}^{\infty} e^{j\pi u^2/2} du \right $	where H $_{ m c}$ is the clearance height parameter: $m{H}_{m{c}} pprox \sqrt{rac{2d}{\lambda_0 d_1 d_2}} m{h}_{m{c}}$				
		Received power:				
	(0,	$P_r = P_{r0} F_d ^2$				
	$20 \log(0.5 + 0.62H_c),$ $20 \log(0.5 \exp(0.95H_c)),$	$0 \le H_c \le 1$ Earth's bulge factor: $-1 \le H_c \le 0$				
	$F_d(dB) = \begin{cases} 0, \\ 20 \log(0.5 + 0.62H_c), \\ 20 \log(0.5 \exp(0.95H_c)), \\ 20 \log\left(0.4 + \sqrt{0.1184 - (0.38 + 0.1H_c)}\right), \\ 20 \log\left(\frac{-0.225}{H_c}\right), \end{cases}$	$(b = \frac{3747}{1.5\kappa})$, $-2.4 \le H_c \le -1$				
	$\left(20\log\left(\frac{-0.225}{H_c}\right),\right)$	$H_c < -2.4$ (add the max bulge				
		factor to 0.6r₁ to compute the minimum antenna height)				
		ancernia neighty				

		Compiled by Mohammad Sanad Al Taher			
	Power density at Rx: $P_r = P_{\mathrm{di}}$	$ 2A_s ^2$			
	P _{dir} : Power density received if free space	A _s : attenuation factor			
Surface	If $d \le 50/(f_{\mathrm{MHz}})^{1/3}$ miles, then the following	g equations may be used:			
waves:	$ A_s = \frac{2 + 0.3p}{2 + p + 0.6p^2} - \sqrt{p/2} e^{-0.6p} \sin b (b \le 90^\circ)$	$p = \frac{kd}{2\sqrt{\varepsilon_r^2 + (\sigma/\omega\varepsilon_o)^2}}$ (numerical distance)			
	$b = \tan^{-1} \left(\frac{\varepsilon_r \varepsilon_o \omega}{\sigma} \right)$	$\sigma / \omega \varepsilon_o = \frac{1.8 \times 10^4 \sigma}{f_{\text{MHz}}}$			
	Relative dielectric constant of an ionized gas (as	ssuming electrons only):			
	ε =1	$\frac{\omega_p^2}{\rho(\omega-i\nu)}$			
		$o(\omega - jv)$			
	v: collisions per second	N _e : electron density (m ⁻³)			
	$e = 1.59 \times 10^{-19}$ C, electron charge	$m = 9.0 \times 10^{-31}$ kg, electron mass			
Ionospheric	Plasma frequency (rad/s):	If no collisions occur (v=0), then the propagation constant is:			
	$\omega_p = \sqrt{\frac{N_e e^2}{m\varepsilon_o}}$	$k_c = \omega \sqrt{\mu_o \varepsilon_r \varepsilon_o} = k_o \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$			
	V 0	where $k_o = \omega \sqrt{\mu_o \varepsilon_o}$			
	Possible cases for ω : 1) $\omega > \omega_p$: k_c is real, and the wave continues propagating since $e^{-jk_cz} = e^{-j k_c z}$ 2) $\omega < \omega_p$: k_c is imaginary, and the wave is evanescent (attenuates only) since $e^{-jk_cz} = e^{- k_c z}$ 3) $\omega = \omega_p$: k_c = 0, and the wave is reflected. (critical frequency)				
propagation:	At normal incidence, max frequency at which reflection occurs:				
	$f_c = \frac{\omega_c}{2\pi} \approx 9\sqrt{N_{e\text{max}}}$				
	Reflection can occur at smaller N_e (or higher f_c) if incidence is oblique.				
	At oblique incidence: (angle of incidence: 1/1.)				
	Maximum Usable Frequency: (from secant/Martyn's law)				
	$f = 9\sqrt{N_{e \max}} \sec \psi_i = f_c \sec \psi_i$				
	MUF is found when $sec(\psi_i)$ is max, Optimum USkip distance:	Jsable Frequency is 0.5 to 0.8 of MUF			
	Flat Earth model:	Spherical Earth model:			
	$d=2h'\cdot tan(\psi_i)$	$d = 2\sqrt{2R'_e h'}$			

	Referring to Figure 1 below, curved Earth equations:					
	$\frac{1 + h'/R'_e - \cos\theta}{\sin\theta} = \frac{1}{\tan\psi_i}$	$=\frac{d}{2R_e'} \qquad \qquad R = \frac{2R_e' \sin \theta}{\sin \psi_i}$				
	Launch angle: $\Delta = \phi - 90^\circ = 90^\circ - \theta - \psi_i$	<u> </u>				
Ionospheric	Modified Friis formula:					
propagation (continued):	$P_r = \frac{P_t G_t G_r}{\left(4\pi R/\lambda\right)^2} I$	$L_x L_{\alpha}$				
	The losses in dB are: (negative)					
	$L_x = L_{\text{pol}} + L_{\text{refl}} - G_{\text{iono}}$	G _{iono} : gain due to focusing by the curvature of the ionosphere				
	L _{refl} : reflection loss in case of multiple hops	L _α : absorption loss				
	L _{pol} : polarization loss due to Faraday rotation and earth reflections	R: great circle path via the virtual reflection point (as defined previously)				
	Refractivity:					
	$N(h) = [n(h) - 1]10^{6} \qquad \Lambda \qquad n(h) = \sqrt{\varepsilon_r(h)}$					
Ducts and nonstandard refraction: (refer to	Normal atmosphere (equivalent earth radius): Gradient of the vertical refractive index is linear if	of $dN/dh < -157$				
Table 1 below)	$dN/dh \approx -39$ N units/km	Rays will return to the surface				
	Modified refractivity:	For ducting:				
	$M(h) = N(h) + 10^6 (h/R'_e)$	dM/dh = dN/dh + 157				
	attenuation in dB/km:	_ h				
	$A = aR^b$ where R is the rate of rain in mm/hr					
Attenuation due to rain and gases:	$a = G_a f_{\text{GHz}}^{E_a}$	$b = G_b f_{\text{GHz}}^{E_b}$				
	- as GHZ	- by GHZ				
	$G_a = 6.39 \times 10^{-5}$ $E_a = 2.03$ $f_{GHz} < 2.9$ = 4.21×10^{-5} = 2.42 $2.9 \le f_{GHz} < 54$ = 4.09×10^{-2} = 0.699 $54 \le f_{GHz} < 180$	$\begin{array}{lll} G_b = 0.851 & E_b = 0.158 & f_{\rm GHz} < 8.5 \\ = 1.41 & = -0.0779 & 8.5 \le f_{\rm GHz} < 25 \\ = 2.63 & = -0.272 & 25 \le f_{\rm GHz} < 164 \end{array}$				

Conversions: 0.0254 m = 1 in; 12 in = 1 ft; 3.3 ft = 1 m; 5280 ft = 1 mi; 1 km = 0.62 mi

$L_{S0}: 500 dB) = L_F + A_{mul}(f,d) - G(h_{te}) - G(h_{re}) - G_{AREA}$ $L_{S0}: 500 dF propagation path loss$ $L_{r}: free space propagation loss$ $A_{mol}(f,d): median attenuation relative to free space, found from plots$ $G(h_{re}): base station antenna height gain factor$ $G_{AREA}: gain due to environment, found from plots$ $Gain factor calculations:$ $G(h_{te}) = 20log \left(\frac{h_{te}}{200}\right) 1000m > h_{te} > 30m$ $G(h_{re}) = 10log \left(\frac{h_{re}}{3}\right) 10m > h_{re} > 3m$ $G(h_{re}) = 20log \left(\frac{h_{re}}{3}\right) 10m > h_{re} > 3m$ $L_F(dB) = 32.45 + 20 \log_{10} f_c (MHz) + 20 \log_{10} d (km)$ $P_f = EIRP + G_f - L_{50} \text{where the Equivalent isotropic Radiated } Power, EIRP = P_LG_L$ $Path loss for different terrains:$ $L_{50-urban}(dB) = 69.55 + 26.16log f_c - 13.82log h_{te} - \alpha(h_{re}) + \left(44.9 - 6.55log h_{te}\right) log d$ $L_{50-urban}(dB) = L_{50-urban} - 2\left[log \left(\frac{f_c}{28}\right)^2 - 5.4\right]$ $L_{50-urban}(dB) = L_{50-urban} - 4.78 \left[log f_c\right]^2 - 18.33log f_c - 40.94$ $f_c: frequency (in MHz) from 150MHz to 1500MHz$ $h_{re}: Rx antenna height (in m) from 1500MHz$ $h_{re}: Rx antenna height (in m) from 100m d. distance from Tx to Rx (in km)$ $\alpha(h_{re}) is the correction factor for effective mobile height, calculated from: 1) for a small city:$		Valid for: $150 \text{MHz} \le f_c \le 1920 \text{MHz}$, $1 \text{km} \le d \le 100 \text{km}$, and $30 \text{m} < h_{te} < 1000 \text{m}$				
$A_{mu}(f,d): \mbox{ median attenuation relative to free space, found from plots} \\ G(h_{re}): \mbox{ mobile antenna height gain factor} \\ G(h_{re}): \mbox{ mobile antenna height gain factor} \\ Gain factor \mbox{ calculations:} \\ G(h_{te}) = 20 log \left(\frac{h_{te}}{200}\right) & 1000m > h_{te} > 30m \\ G(h_{re}) = 10 log \left(\frac{h_{re}}{3}\right) & 10m > h_{re} > 3m \\ G(h_{re}) = 20 log \left(\frac{h_{re}}{3}\right) & 10m > h_{re} > 3m \\ L_F(dB) = 32.45 + 20 log_{10} f_c (MHZ) + 20 log_{10} d(km) \\ P_F = EIRP + G_F - L_{50} & \text{where the Equivalent Isotropic Radiated Power, EIRP} = P_tG_t \\ Path loss for different terrains: \\ L_{50-urban}(dB) = 69.55 + 26.16 log f_c - 13.82 log h_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55 log h_{te}\right) log d \\ L_{50-suburban}(dB) = L_{50-urban} - 2 \left[log \left(\frac{f_c}{28}\right)^2 - 5.4 \right] \\ L_{50-urban}(dB) = L_{50-urban} - 4.78 \left[log f_c\right]^2 - 18.33 log f_c - 40.94 \\ h_{tc}: \mbox{ frequency (in MHz) from 150MHz to a log of the propagation model:} \\ h_{rc}: \mbox{ Rx antenna height (in m) from 1m to 10m} d: distance from Tx to Rx (in km) a color of the correction factor for effective mobile height, calculated from: 1) for a small city:$		$L_{50}(dB) = L_F + A_{mu}(f,d) -$	$G(h_{te})-G(h_{re})-G_{AREA}$			
$ \begin{array}{c} \text{Space, found from plots} \\ \text{G(hr_e): mobile antenna height gain factor} \\ \text{G(hr_e): mobile antenna height gain factor} \\ \text{Gain factor calculations:} \\ \\ \text{Gain factor calculations:} \\ \\ \text{G(h_{te}) = 20log} \left(\frac{h_{te}}{200} \right) & 1000\text{m} > h_{te} > 30\text{m} \\ \\ \text{G(h_{re}) = 10log} \left(\frac{h_{re}}{3} \right) & h_{re} \leq 3\text{m} \\ \\ \text{G(h_{re}) = 20log} \left(\frac{h_{re}}{3} \right) & 10\text{m} > h_{re} > 3\text{m} \\ \\ \\ \text{L}_F \left(dB \right) = 32.45 + 20\log_{10} f_c \left(MHz \right) + 20\log_{10} d \left(km \right) \\ \\ \text{Pr = EIRP + G_r - L50} & \text{where the Equivalent Isotropic Radiated Power, EIRP = PtGt} \\ \\ \text{Path loss for different terrains:} \\ \text{L}_{50-\text{urban}} (\text{dB}) = 69.55 + 26.16\log f_c - 13.82\log h_{te} \\ -\alpha (h_{re}) + \left(44.9 - 6.55\log h_{te} \right) \log d \\ \\ \text{L}_{50-\text{suburban}} (\text{dB}) = L_{50-\text{urban}} - 2 \left[\log \left(\frac{f}{2} \right)^2 - 5.4 \right] \\ \text{L}_{50-\text{urban}} (\text{dB}) = L_{50-\text{urban}} - 4.78 \left[\log f_c \right]^2 - 18.33\log f_c - 40.94 \\ \\ \text{h_{te:} frequency (in MHz) from 150MHz to a model:} \\ h_{re:} \text{ Rx antenna height (in m) from 1m to 10m} & \text{d: distance from Tx to Rx (in km)} \\ \\ \alpha (h_{re}) \text{ is the correction factor for effective mobile height, calculated from:} \\ 1) \text{ for a small city:} \\ \end{array}$		L ₅₀ : 50% of propagation path loss	L _F : free space propagation loss			
$ \begin{array}{c} \text{Okumura} \\ \text{model:} \end{array} $						
$G(h_{te}) = 20log\left(\frac{h_{te}}{200}\right) 1000m > h_{te} > 30m$ $G(h_{re}) = 10log\left(\frac{h_{re}}{3}\right) h_{re} \leq 3m$ $G(h_{re}) = 20log\left(\frac{h_{re}}{3}\right) 10m > h_{re} > 3m$ $L_F\left(dB\right) = 32.45 + 20\log_{10} f_c\left(MHZ\right) + 20\log_{10} d\left(km\right)$ $P_F = EIRP + G_F - L_{50} \text{where the Equivalent Isotropic Radiated Power, EIRP} = P_tG_t$ $Path loss for different terrains: \\ L_{50-urban}(dB) = 69.55 + 26.16logf_c - 13.82logh_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55logh_{te}\right)logd$ $L_{50-urban}(dB) = L_{50-urban} - 2\left[log\left(\frac{f_c}{28}\right)\right]^2 - 5.4$ $L_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $f_c: \text{ frequency (in MHz) from 150MHz to} \qquad h_{te}: \text{ effective Tx antenna height (in m) from 30m to 200m} \\ h_{re}: \text{ Rx antenna height (in m) from 1m to 10m} \qquad d: \text{ distance from Tx to Rx (in km)} \\ \alpha(h_{re}) \text{ is the correction factor for effective mobile height, calculated from:} $		G(h _{re}): mobile antenna height gain factor				
$G(h_{re}) = 10log\left(\frac{h_{re}}{3}\right) h_{re} \leq 3m$ $G(h_{re}) = 20log\left(\frac{h_{re}}{3}\right) 10m > h_{re} > 3m$ $L_F\left(dB\right) = 32.45 + 20\log_{10} f_c\left(MHz\right) + 20\log_{10} d\left(km\right)$ $P_r = EIRP + G_r - L_{50} \text{where the Equivalent Isotropic Radiated Power, EIRP} = P_tG_t$ $Path loss for different terrains: L_{50-urban}(dB) = 69.55 + 26.16logf_c - 13.82logh_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55logh_{te}\right)logd$ $L_{50-suburban}(dB) = L_{50-urban} - 2\left[log\left(\frac{f_c}{28}\right)\right]^2 - 5.4$ $L_{50-urban}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $f_c: frequency (in MHz) from 150MHz to 1500MHz t$						
$G(h_{re}) = 20log \left(\frac{h_{re}}{3}\right) 10m > h_{re} > 3m$ $L_F(dB) = 32.45 + 20\log_{10} f_c(MHZ) + 20\log_{10} d(km)$ $P_r = EIRP + G_r - L_{50} \text{where the Equivalent Isotropic Radiated Power, EIRP} = P_{tGt}$ $Path loss for different terrains: \\ L_{50-urban}(dB) = 69.55 + 26.16log f_c - 13.82log h_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55log h_{te}\right)log d$ $L_{50-urban}(dB) = L_{50-urban} - 2\left[log \left(\frac{f_c}{28}\right)^2 - 5.4\right]$ $L_{50-urban}(dB) = L_{50-urban} - 4.78\left[log f_c\right]^2 - 18.33log f_c - 40.94$ $f_c: \text{ frequency (in MHz) from 150MHz to} \\ 1500MHz 30m \text{ to 200m} \\ h_{re}: \text{ Rx antenna height (in m) from 1m to 10m} d: \text{ distance from Tx to Rx (in km)} \\ \alpha(h_{re}) \text{ is the correction factor for effective mobile height, calculated from:} \\ 1) \text{ for a small city:}$		$G(h_{te}) = 20\log\left(\frac{h_{te}}{200}\right)$	1000m > h _{te} > 30m			
$L_F(dB) = 32.45 + 20\log_{10} f_c(MHz) + 20\log_{10} d(km)$ $P_r = EIRP + G_r - L_{50} \text{where the Equivalent Isotropic Radiated Power, EIRP} = P_tG_t$ $Path loss for different terrains: \\ L_{50-urban}(dB) = 69.55 + 26.16logf_c - 13.82logh_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55logh_{te}\right)logd$ $L_{50-suburban}(dB) = L_{50-urban} - 2\left[log\left(\frac{f_c}{28}\right)\right]^2 - 5.4$ $L_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $I_{50-rural}(dB) = L_{50-urban} - 4.7$						
$P_{r} = EIRP + G_{r} - L_{50} \qquad \text{where the Equivalent Isotropic Radiated Power, EIRP} = P_{t}G_{t}$ Path loss for different terrains: $L_{50-urban}(dB) = 69.55 + 26.16logf_{c} - 13.82logh_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55logh_{te}\right)logd$ $L_{50-suburban}(dB) = L_{50-urban} - 2\left[log\left(\frac{f_{c}}{28}\right)\right]^{2} - 5.4$ $L_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_{c}\right]^{2} - 18.33logf_{c} - 40.94$ Hata propagation propagation model: $h_{te}: \text{ effective Tx antenna height (in m) from } 1500\text{MHz} $ $h_{te}: \text{ Rx antenna height (in m) from } 1\text{m to } 10\text{m} $ d: distance from Tx to Rx (in km) $\alpha(h_{re}) \text{ is the correction factor for effective mobile height, calculated from: } 1) \text{ for a small city:}$		$G(h_{re}) = 20\log\left(\frac{h_{re}}{3}\right)$	10m > h _{re} > 3m			
$L_{50-urban}(dB) = 69.55 + 26.16logf_c - 13.82logh_{te} \\ -\alpha(h_{re}) + \left(44.9 - 6.55logh_{te}\right)logd \\ L_{50-suburban}(dB) = L_{50-urban} - 2 \left[log\left(\frac{f_c}{28}\right)^2 - 5.4\right] \\ L_{50-rural}(dB) = L_{50-urban} - 4.78 \left[logf_c\right]^2 - 18.33logf_c - 40.94$ $Hata_{propagation model:} \\ h_{re}: frequency (in MHz) from 150MHz to 1500MHz to 1500MHz $		$L_F(dB) = 32.45 + 20\log_{10} f_c(MHz) + 20\log_{10} d(km)$				
$L_{50-urban}(dB) = 69.55 + 26.16logf_c - 13.82logh_{te}$ $-\alpha(h_{re}) + \left(44.9 - 6.55logh_{te}\right)logd$ $L_{50-suburban}(dB) = L_{50-urban} - 2\left[log\left(\frac{f_c}{28}\right)\right]^2 - 5.4$ $L_{50-rural}(dB) = L_{50-urban} - 4.78\left[logf_c\right]^2 - 18.33logf_c - 40.94$ $f_c: frequency (in MHz) from 150MHz to $		$P_r = EIRP + G_r - L_{50}$	·			
$L_{50-suburban}(dB) = L_{50-urban} - 2 \bigg[log \bigg(\frac{f_c}{28} \bigg) \bigg]^2 - 5.4$ $L_{50-rural}(dB) = L_{50-urban} - 4.78 \bigg[log f_c \bigg]^2 - 18.33 log f_c - 40.94$ Hata propagation propagation model: $\frac{f_c: \text{ frequency (in MHz) from 150MHz to}}{1500 \text{MHz}} \frac{h_{te}: \text{ effective Tx antenna height (in m) from 30m to 200m}}{30 \text{m to 200m}}$ $\frac{h_{re}: \text{ Rx antenna height (in m) from 1m to 10m}}{\alpha(h_{re}) \text{ is the correction factor for effective mobile height, calculated from: 1) for a small city:}$						
$\textbf{L}_{50-\text{rural}}(\text{dB}) = \textbf{L}_{50-\text{urban}} - 4.78 \Big[\text{logf}_c \Big]^2 - 18.33 \text{logf}_c - 40.94$ $\textbf{Hata propagation model:}$ $\textbf{f}_c: \text{ frequency (in MHz) from 150MHz to 1500MHz}$ $\textbf{h}_{te}: \text{ effective Tx antenna height (in m) from 30m to 200m}$ $\textbf{d}: \text{ distance from Tx to Rx (in km)}$ $\alpha(\textbf{h}_{re}) \text{ is the correction factor for effective mobile height, calculated from: 1) for a small city:}$		$-\alpha(h_{re})+(44.9-6.55logh_{te})logd$				
Hata propagation model:		$L_{50-suburban}(dB) = L_{50-urban} - 2$	$2\left[\log\left(\frac{f_{c}}{28}\right)\right]^{2}-5.4$			
$ \begin{array}{c} \textbf{propagation} \\ \textbf{model:} \end{array} \begin{array}{c} 1500 \text{MHz} \\ \hline \\ h_{re} : \text{Rx antenna height (in m) from 1m to 10m} \\ \hline \\ \alpha(h_{re}) \text{ is the correction factor for effective mobile height, calculated from:} \\ \hline \\ 1) \text{ for a small city:} \end{array} $		$L_{50-rural}(dB) = L_{50-urban} - 4.78$	$\left[\log f_{\rm c}\right]^2 - 18.33 \log f_{\rm c} - 40.94$			
h_{re} : Rx antenna height (in m) from 1m to 10m d: distance from Tx to Rx (in km) $\alpha(h_{re})$ is the correction factor for effective mobile height, calculated from: 1) for a small city:	propagation	, , ,				
1) for a small city:		h _{re} : Rx antenna height (in m) from 1m to 10m	d: distance from Tx to Rx (in km)			
$\alpha(h_{re}) = (1.1log f_c - 0.7)h_{re} - (1.56log f_c - 0.8)dB$, ,,				
, , , , ,		$\alpha(h_{re}) = (1.1log f_c - 0.7)h_{re} - (1.56log f_c - 0.8)dB$				
2) for a large city:		, , ,				
$\alpha(h_{re}) = 8.29 (log 1.54 h_{re})^2 - 1.1 dB$ for $f_c \le 300 MHz$		$\alpha(h_{re}) = 8.29 (log 1.54 h_{re})^2$	-1.1 dB for $f_c \le 300$ MHz			
$\alpha(h_{re}) = 3.2 (log 11.75 h_{re})^2 - 4.97 dB$ for $f_c \ge 300 MHz$		$\alpha(h_{re}) = 3.2 (log11.75h_{re})^2$	-4.97 dB for $f_c \ge 300$ MHz			

Environment-	$L_p = L_0 + 10\alpha \log_{10}(d)$				
based path loss:	L ₀ : frequency dependent comp of distance. Often path loss at	•	dent α: path loss gradient or path loss exponent		
General path	$P_r(d) \propto \left($	$\left(\frac{P_t}{d^{lpha}}\right)$ or I	$P_r(d) = \left(\frac{P_t}{L_0(d/d_0)^{\alpha}}\right)$		
ioss ioimula.	α: path loss gradient or path lo exponent, as in environment-b loss	ased path c	o: constant computed at distance do lo is 1m in indoor areas and 100m or 1km in outdoor areas		
	Motley-Keenan and Rappaport	model: (L ₀ as a	bove)		
Indoor path loss models:	$L_p = L_0 + 2$	$20\log d$	$+\sum_{i}m_{i}W_{i}+\sum_{j}n_{j}F_{j}$		
	m _i : number of partitions of typ W _i : loss associated with partition	•	n _i : number of floors of type j, F _i : loss associated with floor j		
Skin depth:	$\delta_{\rm S} = \left[\frac{{\rm k}^2}{2} \left[\sqrt{\varepsilon_{\rm r}^2 + \left[\sqrt{\frac{\sigma}{\omega \varepsilon_0}}\right]^2} - \varepsilon_{\rm r} \right] \right]^{-1/2}$				
	Recall from EM2: $k = 2\pi/\lambda$ and ϵ_r and $\sigma/\omega\epsilon_0$ are the real and imaginary parts of the dielectric constant respectively				
	In terms of energy (W), time (t), and mass (m) or volume (V) and density (ρ in kg/m³):				
	$SAR = \frac{d}{dt} \frac{dW}{dm} = \frac{d}{dt} \frac{dW}{\rho dV}$				
	In terms of RMS electric field (E in V/m), conductivity (σ in S/m), and density:				
Specific Absorption Rate:	$SAR = \frac{\sigma E^2}{\rho}$				
	As a function of rate of rise in temperature:				
		$SAR = \frac{c \Delta T}{\Delta t} \bigg _{t=0}$			
	ΔT: change in temperature (°C or K)	Δt: duration o	f exposure (s) C: specific heat capacity [J/(kg °C)]		

	$E = \sqrt{\left E_x^2\right + \left E_y^2\right + \left E_z^2\right }$	$H = \sqrt{ H_x^2 + H_y^2 + H_z^2 }$		
	$\hookrightarrow S_E = 0.1 \left[\left E_x \right ^2 + \left E_y \right ^2 + \left E_z \right ^2 \right] / 376.73$	$\hookrightarrow S_H = 0.1 [H_x ^2 + H_y ^2 + H_z ^2] 376.73$		
	where S_E and S_H are in mW/cm ² , and $\eta_0 = 120\pi$	= 376.73 (intrinsic impedance)		
Compliance with RF	·			
exposure	$S = \max\{S_{E}, S_{H}\}$			
standards:	Max combined power densities in environments with mixed frequencies sources:			
	$\sum_{i=1}^{n} \frac{S_i}{L_i} = \frac{S_1}{L_1} + \frac{S_2}{L_2} + \dots + \frac{S_n}{L_n} \le 1$			
	where S_i is the power density at frequency band i, and L_i is the Maximum Permissible Exposure (MPE) at frequency band i.			

Figures and Tables:

Figure 1: Ionospheric propagation angles and sides.

dN / dh	Ray Curvature	κ	Atmospheric Refraction	Virtual Earth	Horizontally Launched Ray
> 0	up	< 1		more convex	
0	none	1	below	actual	
$0 > \frac{dN}{dh} > -39$		> 1	normal	less	moves away from
		4/3	normal	convex	Earth
$-39 > \frac{dN}{dh} > -157$	down	> 4/3	above	convex	23444
-157			normal	plane	parallel to Earth
< -157			super-refraction	concave	draws closer to Earth

Table 1: Refractivity and ducting conditions.

Frequency Range, f(MHz)	Electric Field Strength, E(V/m)	Magnetic Field Strength, H (A/m)	Power Density E Field; H Field S (mW/cm²)	Averaging Time $ E^2 $; $ H^2 $; S (min.)
0.003-0.1	614	163	(100; 1,000,000)*	6
0.1-3.0	614	16.3/f	$(100; 10,000/f^2)*$	6
3.0-30	1,824/f	16.3/f	$(900/f^2; 10,000/f^2)*$	6
30-100	61.4	16.3/f	$(1.0; 10,000/f^2)*$	6
100-300	61.4	0.163	1.0	6
300–3,000	_	_	f/300	6
3,000-15,000		_	10	6
15,000-300,000			10	$616,000/f^{1.2}$

Table 2: ANSI/IEEE C95.1-1992 Radio Protection Guidelines for Controlled Environments.

^{*} Plane-wave equivalent power density, not suitable for near-field conditions but can be used for comparisons.

Frequency Range, f(MHz)	Electric Field Strength, E(V/m)	Magnetic Field Strength, H (A/m)	Power Density E Field; H Field S (mW/cm²)	Averaging Time E ² ; S(min.)	Averaging Time H ² ; S (min.)
0.003-0.1	614	163	(100; 1,000,000)*	6	6
0.1-1.34	614	16.3/f	$(100; 10,000/f^2)*$	6	6
1.34-3.0	823.8/f	16.3/f	$(180/f^2; 10,000/f^2)*$	$f^2/0.3$	6
3.0-30	823.8/f	16.3/f	$(180/f^2; 10,000/f^2)*$	30	6
30-100	27.5	$158.3/f^{1.668}$	$(0.2; 940,000/f^{3.336})*$	30	$0.0636f^{1.337}$
100-300	27.5	0.0729	0.2	30	30
300–3,000	_		<i>f</i> /1,500	30	_
3,000-15,000	Data .	_	f/1,500	90,000/f	_
15,000-300,000	10/	>	10	$616,000/f^{1.2}$	_

Table 3: ANSI/IEEE C95.1-1992 Radio Frequency Protection Guides for Uncontrolled Environments.

^{*} Plane-wave equivalent power density, not suitable for near-field conditions but can be used for comparisons.

Frequency range	Magnetic flux density (mT)	Current density (mA/m²) (rms)	Whole body average SAR (W/kg)	Localised SAR (head and trunk) (W/kg)	Localised SAR (limbs) (W/kg)	Power density, S (W/m²)
0 Hz	40	_	-	_	-	_
>0-1 Hz	_	8	_	_	_	_
1-4 Hz	_	8/f	_	_	_	_
4-1 000 Hz	_	2	_	_	-	-
1 000 Hz-100 kHz	_	f/500	_	_	_	_
100 kHz-10 MHz	-	f/500	0,08	2	4	-
10 MHz-10 GHz	_	_	0,08	2	4	_
10-300 GHz	_	_	_	_	_	10

Table 4: Basic restrictions for electric, magnetic, and electromagnetic fields.

Frequency Range, f(MHz)	Electric Field Strength, E (V/m)	Magnetic Field Strength, H (A/m)	Power Density S (mW/cm²)	Averaging Time (min.)
0.3-3.0	614	1.63/f	(100)*	6
3.0-30	1,842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1,500	_	_	f/300	6
1,500-100,000	_	_	5	6

Table 5: 1996 FCC limits for occupational/controlled environments.

Frequency Range, f(MHz)	Electric Field Strength, E(V/m)	Magnetic Field Strength, H (A/m)	Power Density S (mW/cm²)	Averaging Time (min.)
0.3-1.34	614	1.63/f	(100)*	30
01.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1,500	_	_	f/1,500	30
1,500-100,000	_	_	1.0	30

Table 6: 1996 FCC limits for general population/uncontrolled environments.