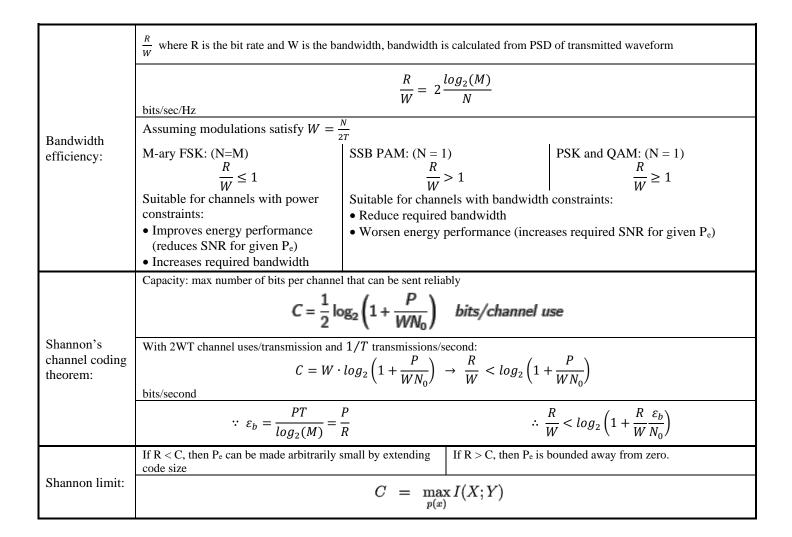
EE551: Notable Equations (missing chapter 10)

Compiled by Mohammad Sanad AlTaher

Chapter 8:


Decision Boundary Equation:	$r.s_i + \frac{1}{2}[N_0 \ln P_r(s_i) - \mathcal{E}_i]$					
Binary Antipodal Signals with ML:	$P_r(C) = 1 - Q\left(\sqrt{\frac{2\varepsilon_b}{N_0}}\right)$	$P_r(E) = P_2 = 1 - P_r(C) = Q\left(\sqrt{\frac{2\varepsilon_b}{N_0}}\right)$				
Binary Orthogonal Signals with ML:	$P_r(C) = P_r(s_1)P_r(C s_1) + P_r(s_2)P_r(C s_2)$ $= \frac{1}{2} \left[1 - Q\left(\sqrt{\frac{\varepsilon_b}{N_0}}\right) \right] + \frac{1}{2} \left[1 - Q\left(\sqrt{\frac{\varepsilon_b}{N_0}}\right) \right]$ $= 1 - Q\left(\sqrt{\frac{\varepsilon_b}{N_0}}\right)$	$P_r(E) = P_2 = 1 - P_r(C) = Q\left(\sqrt{\frac{\varepsilon_b}{N_0}}\right)$				
General Binary Signaling with MAP detector	$d_{12}^2 = d^2 = \varepsilon_1 + \varepsilon_2 - 2\sqrt{\varepsilon_1\varepsilon_2}\rho_{12}$ $\rho_{12} = \frac{1}{\sqrt{\varepsilon_1\varepsilon_2}} \int_0^{T_b} s_1(t) \cdot s_2(t) dt = \frac{\langle s_1, s_2 \rangle}{\ s_1\ \ s_2\ } = \frac{s_1 \cdot s_2}{\sqrt{\varepsilon_1\varepsilon_2}}$ $r_{th} = \frac{N_0/2}{d} \ln\left(\frac{P_r(s_1)}{P_r(s_2)}\right)$ $\rho_{12} = -1, \text{ when antipodal}$ $\rho_{12} = 0, \text{ when orthogonal}$	$P_{r}(C) = P_{r}(s_{1}) \left[1 - Q\left(\frac{d + 2r_{th}}{\sqrt{2N_{0}}}\right) \right] + P_{r}(s_{2}) \left[1 - Q\left(\frac{d - 2r_{th}}{\sqrt{2N_{0}}}\right) \right]$ $P_{r}(E) = 1 - P_{r}(C) = P_{2} = P_{r}(s_{1}) \left[Q\left(\frac{d + 2r_{th}}{\sqrt{2N_{0}}}\right) \right] + P_{r}(s_{2}) \left[Q\left(\frac{d - 2r_{th}}{\sqrt{2N_{0}}}\right) \right]$				
M-ary PAM:	$\mathcal{E}_{\text{bavg}} = \frac{(M^2 - 1)\mathcal{E}_p}{3\log_2 M} A^2 \qquad P_r(C)$	$P_{M} = 1 - \frac{2(M-1)}{M} Q\left(\sqrt{\frac{d_{min}^{2}}{2N_{0}}}\right) \qquad P_{M} = \frac{2(M-1)}{M} Q\left(\sqrt{\frac{6\log_{2}M}{(M^{2}-1)}} \frac{\mathcal{E}_{\text{bavg}}}{N_{0}}\right)$				
PSK:	$d_{\min} \approx 2\sqrt{\frac{\pi^2 \log_2 M}{M^2}} \mathcal{E}_b \qquad P_r(E) = P_4 = 1 - P_r(C) = 2\left[Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right)\right] - \left[Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right)\right]^2 \qquad P_b = Q\left(\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right)$					
Union Bound:	$P_{r}(E) = \frac{1}{M} \sum_{i=1}^{M} P_{r}(E s_{i}) \le \frac{1}{M} \sum_{i=1}^{M} \left[\sum_{\substack{k=1\\k \neq i}}^{M} Q\left(\frac{d_{ik}}{\sqrt{2N_{0}}}\right) \right]$					

x	Q(x)	x	Q(x)	x	Q(x)	x	Q(x)
0	0.500000	1.8	0.035930	3.6	0.000159	5.4	3.3320×10 ⁻⁸
0.1	0.460170	1.9	0.028717	3.7	0.000108	5.5	1.8990×10^{-8}
0.2	0.420740	2	0.022750	3.8	7.2348×10^{-5}	5.6	1.0718×10^{-8}
0.3	0.382090	2.1	0.017864	3.9	4.8096×10^{-5}	5.7	5.9904×10 ⁻⁹
0.4	0.344580	2.2	0.013903	4	3.1671×10^{-5}	5.8	3.3157×10^{-9}
0.5	0.308540	2.3	0.010724	4.1	2.0658×10^{-5}	5.9	1.8175×10^{-9}
0.6	0.274250	2.4	0.008198	4.2	1.3346×10^{-5}	6	9.8659×10^{-10}
0.7	0.241960	2.5	0.006210	4.3	8.5399×10^{-6}	6.1	5.3034×10^{-10}
0.8	0.211860	2.6	0.004661	4.4	5.4125×10^{-6}	6.2	2.8232×10^{-10}
0.9	0.184060	2.7	0.003467	4.5	3.3977×10^{-6}	6.3	1.4882×10^{-10}
1	0.158660	2.8	0.002555	4.6	2.1125×10^{-6}	6.4	7.7689×10^{-11}
1.1	0.135670	2.9	0.001866	4.7	1.3008×10^{-6}	6.5	4.0160×10^{-11}
1.2	0.115070	3	0.001350	4.8	7.9333×10 ⁻⁷	6.6	2.0558×10^{-11}
1.3	0.096800	3.1	0.000968	4.9	4.7918×10 ⁻⁷	6.7	1.0421×10^{-11}
1.4	0.080757	3.2	0.000687	5	2.8665×10^{-7}	6.8	5.2309×10^{-12}
1.5	0.066807	3.3	0.000483	5.1	1.6983×10^{-7}	6.9	2.6001×10^{-12}
1.6	0.054799	3.4	0.000337	5.2	9.9644×10 ⁻⁸	7	1.2799×10^{-12}
1.7	0.044565	3.5	0.000233	5.3	5.7901×10^{-8}	7.1	6.2378×10 ⁻¹³

$$P[X > \alpha] = Q\left(\frac{\alpha - m}{\sigma}\right)$$
$$P[X < \alpha] = Q\left(\frac{m - \alpha}{\sigma}\right)$$

Chapter 9:

	Waveforms:	$f_m = f_c + m\Delta f$					
	$u_m(t) = Re\left(s_m(t)e^{j2\pi f_c t}\right) = Re\left(\sqrt{\frac{2\mathcal{E}_s}{T}}e^{j2\pi m\Delta f t} e^{j2\pi f_c t}\right) = \sqrt{\frac{2\mathcal{E}_s}{T}}\cos(2\pi f_m t) \text{for } 0 \le t \le T, \qquad m = T$	$\Delta f = f_m - f_n $					
	$\varepsilon_m = \varepsilon_s$	for					
		adjacent $ m-n = 1$ tones:					
	Orthogonal: (coherent detection) $\langle u_1(t), u_2(t) \rangle = \frac{\varepsilon_s}{T} \frac{\sin(2\pi m - n \Delta fT)}{2\pi m - n \Delta f} = 0 \longrightarrow \Delta f = \frac{k}{2 m-n \Delta f}$	$\overline{T} \longrightarrow \Delta f_{\min} = \frac{1}{2T}$					
	Orthogonal: (non-coherent detection) $ \langle s_m(t), s_n(t) \rangle = \frac{2\mathcal{E}}{T} \frac{\sin(\pi m - n \Delta fT)}{\pi m - n \Delta f} = 0 \longrightarrow \Delta f = \frac{1}{T}$	$\frac{k}{ m-n T} \longrightarrow \Delta f_{\min} = \frac{1}{T}$					
	Geometric representation:	1					
Orthogonal M-	N = M $u_{mn} = 0 \forall m \neq n$ $u_{mm} = \sqrt{2}$	$\overline{\mathcal{E}_s}$ $d_{mn} = \sqrt{2\mathcal{E}_s}$					
ary Frequency	Demodulation: (assuming ML and u_1 is transmitted)						
Shift Keying:	$r_1 = \sqrt{\mathcal{E}_s} + n_1, r_2 = n_2, etc. \rightarrow \Pr\left\{\text{Correct}\right\} = \Pr\left\{\sqrt{\mathcal{E}} + n_1 > n_2, \cdots, \sqrt{\mathcal{E}} + n_1 < n_2, \cdots, \sqrt{\mathcal{E}} < n_1 < n_2, \cdots, \sqrt{\mathcal{E}} < n_2, \cdots, n_2, \cdots, \sqrt{\mathcal{E}} < n_2, \cdots, \sqrt{\mathcal{E}} < n_2, \cdots, $	$n_1 > n_M$					
	$\rightarrow P_{c} = \int_{-\infty}^{\infty} \Pr\left\{\sqrt{\mathcal{E}} + n_{1} > n_{2}, \dots, \sqrt{\mathcal{E}} + n_{1} > n_{M} \middle n_{1} \right\} f(n_{1}) dn_{1} = \int_{-\infty}^{\infty} \left(\Pr\left\{\frac{1}{2}\right\} \left(\frac{1}{2}\right) dn_{1}\right) dn_{1} d$	$\sqrt{\mathcal{E}} + n_1 > n_2 \Big n_1 \Big\} \Big)^{M-1} f(n_1) dn_1$					
	$\sqrt{\frac{n_0}{n_0}}$	$\Lambda = \int_{-\infty}^{\infty} \left(1 - \left[1 - Q \left(\frac{n_1 + \sqrt{\mathcal{E}}}{\sqrt{\frac{N_0}{2}}} \right) \right]^{M-1} \right) \frac{1}{\sqrt{\pi N_0}} e^{-\frac{n_1^2}{N_0}} dn_1$ $P_e = 1 - P_c =$					
	where $f(n_1)$ is the pdf of noise n_1						
		$(1 - [1 - Q(x)]^{M-1}) \frac{1}{\sqrt{2\pi}} e^{-\frac{(x - \sqrt{2k\gamma_b})^2}{2}} dx$					
	5	$\sqrt{2\pi}$					
	where $x = \frac{n_1 + 1}{\sqrt{n_1 + 1}}$	$\frac{\sqrt{\mathcal{E}}}{M_0/2}$, and $\gamma_b = \mathcal{E}_b/N_0$, and $k = \log_2(M)$					
	$s_m(t) = \sqrt{\frac{2\mathcal{E}_s}{T}}\cos(2\pi f_m t)$ $r(t) = \sqrt{\frac{2\mathcal{E}_s}{T}}\cos(2\pi f_m t + \theta_m) + $	$n(t) \qquad \qquad \theta_m = -2\pi f_m \tau$					
	In absence of noise: $r_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_1 t + \theta_1\right) \qquad r_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_2 t + \theta_2\right)$						
	ψT_b ψT_b ψT_b ψT_b ψT_b						
	2E. (2E. 2E.						
Non-coherent	$\psi_{1c}(t) = \psi_{2c}(t)$	$ os(2\pi f_1 t) \ \psi_{1s}(t) = -\sqrt{2/T_b} \sin(2\pi f_1 t) $					
BFSK:	$s_{2}(t) = \sqrt{\frac{2E_{b}}{T_{b}}}\cos(2\pi f_{2}t + \theta_{2}) = \sqrt{\frac{2E_{b}}{T_{b}}}\cos(2\pi f_{2}t)\cos(\theta_{2}) - \sqrt{\frac{2E_{b}}{T_{b}}}\sin(2\pi f_{2}t)\sin(\theta_{2}) \qquad \qquad \psi_{2c}(t) = \sqrt{2/T_{b}}\cos(2\pi f_{2}t)\cos(\theta_{2}t) + \frac{1}{2}\cos(2\pi f_{2}t)\cos(\theta_{2}t)\cos(\theta_{2}t) + \frac{1}{2}\cos(2\pi f_{2}t)\cos(\theta_{2}t)\cos(\theta_{2}t) + \frac{1}{2}\cos(2\pi f_{2}t)\cos(\theta_{2}t)$	$\cos(2\pi f_2 t) \ \psi_{2s}(t) = \sqrt{2/T_b} \sin(2\pi f_2 t)$					
	$\therefore \qquad s_1 = \left[\sqrt{E_b} \cos \theta_1 \sqrt{E_b} \sin \theta_1 0 0 \right]$						
	$s_2 = \begin{bmatrix} 0 & 0 & \sqrt{E_b} \cos\theta_2 & \sqrt{E_b} \sin\theta_2 \end{bmatrix}$						
		$_{0}(\mathbf{x})$ is the modified Bessel function:					
	(anyalona dataction)						
	$I_{0}\left(\frac{2\sqrt{E(r_{1c}^{2}+r_{1s}^{2})}}{N_{0}}\right) \ge I_{0}\left(\frac{2\sqrt{E(r_{2c}^{2}+r_{2s}^{2})}}{N_{0}}\right) \longrightarrow \sqrt{r_{1c}^{2}+r_{1s}^{2}} \ge \sqrt{r_{2c}^{2}+r_{2s}^{2}} \left[\frac{1}{2\pi}\int_{0}^{2} \exp\left[\frac{2\sqrt{E(r_{1c}\cos(\phi_{1})+2\sqrt{E}r_{1s}\sin(\phi_{1})})}{N_{0}}\right]d\phi_{1} = I_{0}\left(\frac{2\sqrt{E(r_{1c}^{2}+r_{1s}^{2})}}{N_{0}}\right)$						
	$P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right)$						
η -band-limit:	$\frac{\int_{-W}^{W} X(f) ^2 df}{\int_{-\infty}^{\infty} X(f) ^2 df} \ge 1 - \eta \qquad \text{where } \eta \text{ is some out-of-band ratio}$						
Dimensionality	Max dimensions						
	$N \approx KWT$						
Theorem:	where T is the signal duration and K is some constant usually chosen equal to 2						

Chapter 12:

					A A A A A A A		
Self- information:	$I(x_k) = \log_a \frac{1}{P(x_k)}$	$I_{k} = \log_{a} \frac{1}{k} = -\log_{a} p_{k}$			a = 2, info is bits/symbol a = 10, info is Hartley/symbol a = e, info is Nat/symbol		
Entropy:	$H(X) = \mathbb{E}(I_k) = \sum_{1}^{N} p_k \log \frac{1}{p_k} = -\frac{1}{2}$	$\sum_{1}^{N} p_k \log p_k$	$H(X) \le \log N \qquad H(X) \ge H(X Y)$				
Joint and conditional entropy:	$H(Y X) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y x) = \mathbb{E}(-\log p(Y X))$ $H(X Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x y) = \mathbb{E}(-\log p(X Y))$ $\therefore p(x_i, y_j) = p(y_j x_i)p(x_i) = p(x_i y_j)p(y_j)$ $\rightarrow H(X, Y) = H(X) + H(Y X) \Lambda \qquad H(X, Y) = H(Y) + H(X Y)$						
Mutual information:	$I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)} = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log \frac{p(y_j x_i)p(x_i)}{p(x_i)p(y_j)}$ $I(X;Y) = I(Y;X) = H(X) + H(Y) - H(X,Y) = H(Y) - H(Y X) = H(X) - H(X Y)$ $I(X;Y) \ge 0 \text{with equality if X and Y are independent} \qquad I(X;X) = H(X)$						
Source coding theorem:	Given N symbols each with a unique set of R b If N is integer power of 2: $R = \log_2 N \text{bit/symbol}$ $\rightarrow R \ge \log_2 N \Lambda H(X) \le \log_2 N$ Average code length: $\bar{R} = \sum_{k=1}^{N} l(x_i) P(x_i)$	$\log_2 N \stackrel{.}{\leftrightarrow} H$	If N is not a power of 2: $R = \lfloor \log_2 N \rfloor + 1 \text{ bit/symbol}$ $R \ge H(X) \Lambda \qquad \eta = \frac{H(X)}{R} \text{coding efficiency}$ Condition: $H(X) \le \overline{R} < H(X) + 1$				
Huffman coding algorithm:	• Order source symbols by decreasing probability • Group the d least probable symbols, where: $\frac{N}{D-1} = INT + \frac{R}{D-1}$ If $R = 0 \rightarrow d = D - 1$ If $R = 1 \rightarrow d = D$ If $R > 1 \rightarrow d = R$ • Add the probabilities of each group • After the first group of d symbols was coded, other groups contain D symbols, and so on. (D is equal to the base) If blocks of J symbols are encoded at a time, then: $H(X) \leq \frac{\overline{R}_J}{J} < H(X) + \frac{1}{J}$ $\frac{\overline{R}_J}{I} = \overline{R}$						
Mutual information and channel capacity for discrete- valued I/O:	Conditional probability p _{Y X} behave like normal probabilities 2) Find the average conditional entropy by averaging the values from the previous step over X:						

	3) Evaluate H(Y) from the given probabilities of the values of Y or from:						
	$p_Y(y) = \sum_{x \in \Omega_X} p_Y _X(y)$	$y x) p_X(x)$					
	4) Find mutual information: I(X,Y) = H(Y) - H(Y X)						
	$= - \sum_{y \in \Omega_y} p_Y(y) \log_2(p_Y(y))$						
	$+ \sum_{x \in \Omega_x} p_X(x) \sum_{y \in \Omega_y} p_{Y \mid X}(y \mid x) \log_2 p_{Y \mid X}(y \mid x)$						
	5) Channel capacity is then: $C_{\mathcal{S}} = \max_{p_X(x)} I(X,Y) \text{[bits per channel use]}$						
	H(Y) and $H(Y X)$ depend on the input distribution. In some cases where the transition probabilities are symmetric cancel out, then maximizing $I(X,Y)$ is done by maximizing $H(Y)$.						
	$I(X,Y) = H(Y) - H(Y \mid X) = \dots $ where	p is the bit flip probability					
Binary	$= H(Y) + p \log_2 p + (1-p) \log_2 (1-p)$						
Symmetric	since max entropy of binary random variable is 1 and outputs are equiprobable:						
Channel:	$C_{\rm s} = 1 + p \log_2 p + (1-p) \log_2 (1-p)$						
	If $p = 0.5$, $C_s = 0$	If $p = 0$ or 1, $C_s = 1$					
Channel capacity:	$0 \le C \le \min(H(\boldsymbol{X}), H(\boldsymbol{Y})) \le \min(\log \boldsymbol{X} , \log \boldsymbol{y})$	for n uses of channel: $C^{(n)} = \frac{1}{n} \max_{\mathbf{p}_{\mathbf{x}_{1:n}}} I(\mathbf{x}_{1:n}; \mathbf{y}_{1:n})$					

Chapter 13:

Hamming weight and distance:	Weight: w(v) Number of 1s in the sequence v			Distance: d(v,w) Number of bit positions that are different between the two sequences v and w				
	Property #1: $f(x_1, x_2) = f(x_2, x_3) \ge f(x_1, x_2)$			Property #2: $d(\mathbf{v}, \mathbf{w}) = w(\mathbf{v} + \mathbf{w}) \rightarrow d_{min} = w_{min}$				
Linear	$\mathbf{c} = \mathbf{X} \mathbf{G}$ x: the			c: code matrix x: the messag	$a(\mathbf{v}, \mathbf{w}) = w(\mathbf{v} + \mathbf{w}) \rightarrow a_{min} - w_{min}$ code matrix with 1 column and n rows the message matrix with k columns and 1 row generator matrix with n columns and k rows (n, k)			
	$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k \mid \mathbf{P} \end{bmatrix} \qquad \mathbf{P}_k = k$			$k \times k$ identity matrix $k \times (n-k)$ matrix rity matrix		c = $(c_1, c_2,, c_n) = (x_1, x_2, x_3,, x_k, \underbrace{p_1, p_2,, p_{n-k}}_{\text{parity check bits}})$ or flipped with parity check bits before message bits if $G = [P I_k]$		
Block Codes:	$\mathbf{H} = \begin{bmatrix} -\mathbf{P}^T \mid \mathbf{I}_{n-k} \end{bmatrix} \underset{binary \ codes}{=} \begin{bmatrix} \mathbf{P}^T \mid \mathbf{I}_{n-k} \end{bmatrix} \text{ found from}$			om G s.t. cH	$\mathbf{I}^{T} = 0 \Lambda \mathbf{G}\mathbf{H}^{T} = 0$ Number of Independent columns of H is equal to d_{\min} of H, number of dependent columns = $d_{\min} - 1$			d _{min} of H, number
	For an (n,k) code: $d_{min} \le n - k + 1$ Codes with d_{min} detect $d_{min} - 1$ errors and correct up to $\left\lfloor \frac{d_{min} - 1}{2} \right\rfloor$ in each codeword.					$\left \frac{-1}{1}\right $ in each		
	Hamming codes: $(m \ge 2)$ Code length:number of info bits: $n = 2^m - 1$ $k = 2^m - m - 1$			Number of parity bits: n - k = m		Error correction capability: t = 1		Min distance: $d_{min} = 3$
Hard decision	$: \mathbf{r} = \mathbf{c} + \mathbf{e} \rightarrow \mathbf{S} = \mathbf{r}\mathbf{H}^T = \mathbf{e}\mathbf{H}^T \qquad \mathbf{r}: \text{ received} \\ \mathbf{e}: error particular of a set of a s$				2^k valid cod	possible received vectors valid codewords 2^{n-k} error patterns can be corrected-k possible syndromes 2^{n-k}		
decoding: (error detection)	Error patterns: $\binom{n}{e_t} = \frac{1}{e_t!}$	$\frac{n!}{(n-e_t)!}$				bits in the codewo		
	Matrices represented previously are now represented as polynomials: (X is the indeterminate)							
	$\mathbf{c} = [c_0, c_1, \dots, c_{n-1}] \rightarrow c(X) = c_0 + c_1 X + c_2 X^2 + \dots + c_{n-1} X^{n-1}$							
					$+ g_2 X^2 + \dots + g_{n-k-1} X^{n-k-1} + X^{n-k}$ factor of $X^n + 1$ $X + m_2 X^2 + \dots + m_{k-1} X^{k-1}$ degree $(k - 1)$			
Polynomial (Cyclic) codes:	rows of the generator matrix have a cyclic shift, e.g., if element x occurs in column 3 of the first row, it will be in column 4 of the second row. $\begin{array}{c} : GH^T = 0 \rightarrow \\ \mathbf{g}(X)\mathbf{h}(X) = X^n + 1 \end{array}$					$X^{n} + 1$		
	Steps to finding cyclic codes:1) Multiply the message polynomial m(X) by X ^{n-k} 2) Divide the result from the previous step by the generator polynomial g(X) to obtain the $p(X) = X^{n-k} \mathfrak{m}(X) \mod \mathfrak{g}(X)$ remainder3) Add the remainder $p(X)$ to X ^{n-k} $\mathfrak{m}(X)$ to form the codeword $c(X)$ $c(x) = X^{n-k} \mathfrak{m}(X) + p(X) = q(X)g(X)$							
	Syndrome decoding: r(X) = C(X) + e(X) = m(X)g(X) + e(X) = q(X)g(X) + S(X) Syndrome S(X) is the remainder found by dividing r(X) by g(X)							
	$\therefore \hat{\mathcal{C}}(X) = r(X) + \hat{e}(X) \qquad \text{(corrected codeword)}$							