Mid:

Floating Point	$m \cdot b^e$	m : mantissa b : base (2 for binary) e : exponentCondition: $\frac{1}{b} \le m < 1$ Machine Epsilon:
Representation:	$\frac{ \Delta x }{ x } \le \mathscr{C} \qquad \qquad \frac{ \Delta x }{ x } \le \frac{\mathscr{C}}{2}$ $ \Delta x : \text{ interval between numbers}$	$\mathscr{E} = b^{1-t}$ t : number of significant figures in mantissa
Taylor Series Approximation:	$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^{(3)}(x_i)}{3!}h$ h: step size $h = x_{i+1} - x_i$	$h^{3} + \dots + \frac{f^{(n)}(x_{i})}{n!}h^{n} + R_{n}$ Remainder (absolute error): $O(h^{n+1})$ where $\xi \in [x_{i}, x_{i+1}]$ $R_{n} = \frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}$
Error Equations:	Percentage True Relative Error: $\varepsilon_t = \left \frac{x_r^{true} - x_r^{approximate}}{x_r^{true}} \right 100\%$	Relative Percentage Approximate Error: $\varepsilon_a = \left \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}} \right 100\%$
Finite Difference Approximations of first derivative:	Backward: $f'(x_i) \cong \frac{f(x_i) - f(x_{i-1})}{h}$ Centered: $f'(x_i) = \frac{f(x_{i+1}) - j}{2h}$	Forward: $f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} + O(x_{i+1} - x_i)$ $\frac{f(x_{i-1})}{x_i} - O(h^2)$
Total Numerical Error: (for a centered finite difference approximation)	$f'(x_i) = \frac{\tilde{f}(x_{i+1}) - \tilde{f}(x_{i-1})}{2h} + \frac{e_{i+1} - e_{i-1}}{2h} - \frac{f^{(3)}(\xi)}{6}h^2$ True Finite-difference Round-off Truncatio value approximation error error If $e_{i \neq 1} \leq \varepsilon$ (machine epsilon), and $f^{(3)}(\xi) \leq M$, th Total error = $\left f'(x_i) - \frac{\tilde{f}(x_{i+1}) - \tilde{f}(x_{i-1})}{2h} \right \leq \frac{\varepsilon}{h} + \frac{h}{2h}$	Where $e_{i \neq 1}$ is the roundoff error associated with the function of the lower/upper x as follows: $f(x_{i-1}) = \tilde{f}(x_{i-1}) + e_{i-1}$ $f(x_{i+1}) = \tilde{f}(x_{i+1}) + e_{i+1}$ een: Optimal Step Size:
Newton- Raphson: (modified for multiple roots)	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \qquad \qquad$	nown multiplicity (m): $x_{i+1} = x_i - m \frac{f(x_i)}{f'(x_i)}$ nknown multiplicity: $x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$

Secant Method:	$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$ Modified Secant Method (with small per	rturbation factor δ):	Newton-Raphson with $f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$	
	$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$			
	$x_{i+1} = x_i - \frac{u_i \frac{\partial v_i}{\partial y} - v_i \frac{\partial u_i}{\partial y}}{\frac{\partial u_i}{\partial x} \frac{\partial v_i}{\partial y} - \frac{\partial u_i}{\partial y} \frac{\partial v_i}{\partial x}}$	$y_{i+1} = y_i -$	$-\frac{v_i\frac{\partial u_i}{\partial x}-u_i\frac{\partial v_i}{\partial x}}{\frac{\partial u_i}{\partial x}\frac{\partial v_i}{\partial y}-\frac{\partial u_i}{\partial y}\frac{\partial v_i}{\partial x}}$	
Nonlinear Simultaneous Equations:	$\begin{bmatrix} \frac{\partial u_i}{\partial x} & \frac{\partial u_i}{\partial y} \\ \frac{\partial v_i}{\partial x} & \frac{\partial v_i}{\partial y} \end{bmatrix} \begin{bmatrix} x_{i+1} - x_i \\ y_{i+1} - y_i \end{bmatrix} = \begin{bmatrix} -u_i \\ -v_i \end{bmatrix}$			
Bisection Method:	$x_r = \frac{x_l + x_u}{2}$ if $f(x_r) \cdot f(x_l) < 0$, set new $x_u = x_r$ and repeat if $f(x_r) \cdot f(x_l) > 0$, set new $x_l = x_r$ and repeat			
Error Equations for Bisection:	Percentage Approximate Absolute Error: Error: $E_a^n = \frac{\Delta x^0}{2^n}$			
	Error: $\varepsilon_a = \left \frac{x_u - x_l}{x_u + x_l} \right 100\% \qquad \begin{bmatrix} E_a^n = \frac{\Delta}{2} \\ n: \text{ iteration} \\ \Delta x^0 = x_l \end{bmatrix}$	$x_{l}^{0} - x_{l}^{0}$		
	Δx^0 : upper interval	er value of initial interval min	us lower value of initial	
False Position Method: (linear interpolation)	$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$), set new $x_u = x_r$ and repeat), set new $x_l = x_r$ and repeat	
Gauss-Seidel- Jacobi for 3x3 matrix:	$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$	$x_{1} = \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}}$ $x_{2} = \frac{b_{2} - a_{21}x_{1} - a_{23}x_{3}}{a_{22}}$ $x_{3} = \frac{b_{3} - a_{31}x_{1} - a_{32}x_{2}}{a_{33}}$	Conditions for Convergence: $ a_{ii} > \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} $ Magnitude of the diagonal element must be larger than the sum of the magnitudes of the other elements in its row.	

Final:

Best-fit Criterion:	$S_r = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_{i,\text{measured}} - y_{i,\text{measured}})$	$(S_r = \sum_{i=1}^n (y_i - f(x_i))^2$	
	$y = a_0 + a_1 x + e$ $S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$ $\begin{bmatrix} n \\ \sum x_i \\ \sum x_i \end{bmatrix}$	$\begin{bmatrix} a & \Sigma x_i \\ x_i & \Sigma x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \Sigma y_i \\ \Sigma y_i x_i \end{bmatrix}$	
Linear Regression:	values.	$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$	
	Standard error of the estimate: $s_{y/x} = \sqrt{\frac{S_r}{n-2}}$ Coefficient of Determination of the coefficient of Determination of Determination of the coefficient of Determination of Determination of the coefficient of Determination of	ion: s.t. $S_t = \Sigma (y_i - \bar{y})^2$ $r = \frac{n\Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i)}{\sqrt{n\Sigma x_i^2 - (\Sigma x_i)^2} \sqrt{n\Sigma y_i^2 - (\Sigma y_i)^2}}$	
Linearizing Common Relations:	Exponential: $y = \alpha_1 e^{\beta_1 x} \rightarrow$ $\ln y = \ln \alpha_1 + \beta_1 x$ Power: $y = \alpha_2 x^{\beta_2} \rightarrow$ $\log y = \beta_2 \log x + \log x$	g α_2 Saturation Growth Rate: $y = \alpha_3 \frac{x}{\beta_3 + x} \rightarrow \frac{1}{y} = \frac{\beta_3}{\alpha_3} \frac{1}{x} + \frac{1}{\alpha_3}$	
Polynomial Regression:	$y = a_0 + a_1 x + a_2 x^2 + e$ $\begin{bmatrix} n & \Sigma x_i & \Sigma x_i^2 \\ \Sigma x_i & \Sigma x_i^2 & \Sigma x_i^3 \\ \Sigma x_i^2 & \Sigma x_i^3 & \Sigma x_i^4 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \Sigma y_i \\ \Sigma y_i x_i \\ \Sigma y_i x_i^2 \end{bmatrix}$	$f_r = \sum_{i=1}^{r} (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$	
General Linear Least Squares:	For $\{Y\} = [Z]\{A\} + \{E\}$ $S_r = \sum_{i=1}^n \left(y_i - \sum_{j=0}^m a_j z_{ji}\right)^2$	$\{Y\}^{T} = \lfloor y_{1} y_{2} \cdots y_{n} \rfloor$ Coefficients: $\{A\}^{T} = \lfloor a_{0} a_{1} \cdots a_{m} \rfloor$ Errors: $\{E\}^{T} = \lfloor e_{1} e_{2} \cdots e_{n} \rfloor$ $\begin{bmatrix} z_{01} z_{11} \cdots z_{m1} \end{bmatrix}$	
	$[[Z]^{T}[Z]] \{A\} = \{[Z]^{T}\{Y\}\}$ $\{A\} = [[Z]^{T}[Z]]^{-1} \{[Z]^{T}\{Y\}\}$	Errors: $\{E\}^{T} = \lfloor e_{1} e_{2} \cdots e_{n} \rfloor$ $[Z] = \begin{bmatrix} z_{01} & z_{11} & \cdots & z_{m1} \\ z_{02} & z_{12} & \cdots & z_{m2} \\ \vdots & \vdots & \vdots \\ z_{0n} & z_{1n} & \cdots & z_{mn} \end{bmatrix}$	
Nonlinear Regression:	$y_i - f(x_i)_j = \frac{\partial f(x_i)_j}{\partial a_0} \Delta a_0 + \frac{\partial f(x_i)_j}{\partial a_1} \Delta a_1 + e_i$ $\begin{bmatrix} Z_j \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial a_0} & \frac{\partial f_1}{\partial a_1} \\ \frac{\partial f_2}{\partial a_0} & \frac{\partial f_2}{\partial a_1} \\ \vdots \\ \frac{\partial f_n}{\partial a_0} & \frac{\partial f_n}{\partial a_1} \end{bmatrix} \{D\} = \begin{bmatrix} y_1 - f(x_1) \\ y_2 - f(x_2) \\ \vdots \\ y_n - f(x_n) \end{bmatrix} \{\Delta A\} = \begin{bmatrix} \Delta a_0 \\ \Delta a_1 \\ \vdots \\ \Delta a_m \end{bmatrix}$	$\{D\} = [Z_j] \{\Delta A\} + \{E\}$ $a_{0,j+1} = a_{0,j} + \Delta a_0$ $a_{1,j+1} = a_{1,j} + \Delta a_1$ $ \varepsilon_a _k = \left \frac{a_{k,j+1} - a_{k,j}}{a_{k,j+1}}\right 100\%$	

Linear Newton's Divided Difference:	Linear Interpolation: $f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$		
	$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$		
Quadratic Newton's Divided	$b_0 = f(x_0)$	$\therefore \qquad \qquad f_2(x) = a_0 + a_1 x + a_2 x^2$	
	$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$	s.t. $a_0 = b_0 - b_1 x_0 + b_2 x_0 x_1$	
Difference:	$\frac{x_1 - x_0}{x_2 - f(x_1)} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}$	$a_1 = b_1 - b_2 x_0 - b_2 x_1$	
	$b_2 = \frac{x_2 - x_1}{x_2 - x_0}$	$a_2 = b_2$	
	$f_n(x) = b_0 + b_1(x - x_0)$	$+\cdots+b_n(x-x_0)(x-x_1)\cdots(x-x_{n-1})$	
	$b_1 = f[x_1, x_0]$	$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$	
General Newton's	$b_2 = f[x_2, x_1, x_0]$	$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{f[x_i, x_j] - f[x_j, x_k]}$	
Divided Difference:	$b_n = f[x_n, x_{n-1}, \dots, x_1, x_0]$	$f[x_i, x_j, x_k] = \frac{x_i - x_k}{x_i - x_k}$ $f[x_n, x_{n-1}, \dots, x_1, x_0] = \frac{f[x_n, x_{n-1}, \dots, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_0]}{x_n - x_0}$	
	$f_n(x) = f(x_0) + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_2, x_1, x_0]$		
	$+\cdots + (x - x_0)(x - x_1)\cdots (x - x_{n-1})f[x_n, x_{n-1}, \ldots, x_0]$		
	$R_n = f_{n+1}(x) - f_n(x)$	$f^{(n+1)}(\xi) \qquad \qquad$	
Errors in General	$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x_{i+1} - x_i)^{n+1} \qquad R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$		
Newton's:	$R_n = f[x, x_n, x_{n-1}, \dots, x_0](x - x_0)(x - x_1) \cdots (x - x_n)$		
	$R_n \cong f[x_{n+1}, x_n, x_{n-1}, \dots, x_0](x - x_0)(x - x_1) \cdots (x - x_n)$		
	$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$) $L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$	
Lagrange Interpolating	e.g.,		
Polynomials:	$f_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$		
	$R_n = f[x, x_n, x_{n-1}, \dots, x_0] \prod_{i=0}^n (x - x_i)$		
	$f(x) = f(x_0) + m_0(x - x_0) \qquad x_0 \le x$ $f(x) = f(x_1) + m_1(x - x_1) \qquad x_1 \le x$	$\leq x_1$	
Linear Splines:		$m_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$	
	$f(x) = f(x_{n-1}) + m_{n-1}(x - x_{n-1}) \qquad x_{n-1} \le $	$x \leq x_n$	

Quadratic Splines:	$\begin{array}{l} f_i(x) = a_i x^2 + b_i x + c_i \\ \hline f_i(x) = a_i x^2 + b_i x + c_i \\ \hline f_i(x) = a_i x^2 + b_i x + c_i \\ \hline f_i(x) = a_i x^2_{i-1} + b_{i-1} x_{i-1} + c_{i-1} = f(x_{i-1}) \\ \hline f_i(x) = a_i x^2_{i-1} + b_{i-1} x_{i-1} + c_{i-1} = f(x_{i-1}) \\ \hline f_i(x) = a_i x^2_{i-1} + b_{i-1} + c_{i-1} = f(x_{i-1}) \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + c_{i-1} = f(x_{i-1}) \\ \hline f_i(x) = a_i x^2_{i-1} + b_{i-1} = a_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_{i-1} = f(x_{i-1}) \\ \hline f_i(x) = a_i x^2_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i \end{array}$ Conditions: $\begin{array}{c} 1. Values of adjacent polynomials must be equal at interior knots. \\ \hline f_i(x) = a_i x^2_{i-1} + b_i x_{i-1} + b_i x_{i-1} + b_i \end{array}$	
Cubic Splines:	$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$ Conditions: same as quadratic + 4. Second derivatives at end knots must be zero. 5. Second derivatives at interior knots must be equal	
Trapezoidal Rule:	Single $I = (b-a)\frac{f(a) + f(b)}{2}$ Multiple: $I = (b-a)\frac{f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n)}{2n}$ Error in single: $E_t = -\frac{1}{12}f''(\xi)(b-a)^3$ Error in multiple: $E_t = -\frac{(b-a)^3}{12n^3}\sum_{i=1}^n f''(\xi_i)$ $E_a = -\frac{(b-a)^3}{12n^2}\overline{f''}$ Where the bar $\overline{\cdot}$ represents a mean value.	
Simpson's 1/3 Rule:	Single: $I \cong (b-a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$ Multiple: $I \cong (b-a) \frac{f(x_0) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}$ Error in single: $E_t = -\frac{(b-a)^5}{2880} f^{(4)}(\xi)$ Error in multiple: $E_a = -\frac{(b-a)^5}{180n^4} \bar{f}^{(4)}$	
Simpson's 3/8 Rule:	$I \cong (b-a) \frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8} \qquad \text{Truncation error:} \\ E_t = -\frac{(b-a)^5}{6480} f^{(4)}(\xi)$	
High Accuracy Forward derivatives: Error: $O(h^2)$	$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$	
High Accuracy Backward derivatives: Error: $O(h^2)$	$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2}$	
High Accuracy Centered derivatives:	$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$ -f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})	
Error: $O(h^4)$ ODE Second- order Taylor Series Method:	$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$ $y_{i+1} = y_i + h\frac{dy}{dx} + \frac{h^2}{2!}\frac{d^2y}{dx^2} + O(h^3)$ $\frac{\text{s.t.}}{dx} = f(y, x)$ $\frac{\frac{d^2y}{dx^2}}{\text{from } f(y, x)}$	

ODE:

Method	Local truncation error	Global truncation error
Euler Method $y_{i+1} = y_i + h f(x_i, y_i)$	$O(h^2)$	O(h)
Heun's Method		
Predictor: $y_{i+1}^0 = y_i + h f(x_i, y_i)$	$O(h^3)$	$O(h^2)$
Corrector: $y_{i+1}^{k+1} = y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, y_{i+1}^k) \right)$		
Midpoint $y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i)$	$O(h^3)$	$O(h^2)$
$y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$		